
Alexander Vorvul

SOFTWARE QUALITY
ASSURANCE FUNDAMENTALS

Table of Contents

1. Software Quality Assurance History... 5
1.1. 1947–1956 Debugging period..6
1.2. 1957-1978 Demonstration Period... 9
1.3. 1979-1982 Destruction Period...13
1.4. 1983-1987 Evaluation period...17
1.5. 1988-2000 Prevention period.. 21
1.6. 2001-2011 Test Automation Period.. 25
1.7. 2012-2021 Continuous Testing Period..27
1.8. 2022-Present AI-Driven Testing... 30
2. Software Quality... 35
2.1. Software Quality Scopes...37
2.2. Software Quality Testing.. 39
2.3. Software Quality Control..41
2.4. Software Quality Assurance... 43
2.5. Software Quality Characteristics...45
2.6. Entry and Exit Criteria... 49
3. Software Development Life Cycle...51
3.1. Software Conception Stage..54
3.2. Software Planning Stage.. 57
3.3. Software Design Stage..61
3.4. Software Development Stage.. 63
3.5. Software Testing Stage... 66
3.6. Software Deployment Stage.. 69
3.7. Software Maintenance Stage...72
3.8. SDLC Models..75
4. Predictive SDPMs...78
4.1. Bing Bang Model.. 80
4.2. Waterfall Model... 83
4.3. Incremental Model... 86
4.4. Iterative Model... 90
4.5. Spiral Model.. 94
4.6. V-Model..99
5. Adaptive SDPMs.. 107
5.1. Agile Methodology...109
5.2. Agile Methods...111

1

5.3. Agile Manifesto.. 112
5.4. Rapid Application Development.. 114
5.5. Rapid Prototyping.. 117
5.6. Scrum... 120
6. Scrum Framework... 122
6.1. Scrum Team...123
6.2. Product Owner... 125
6.3. Scrum Master..127
6.4. Development Team..128
6.5. Scrum Artifacts...129
6.6. Product Backlog... 131
6.7. Sprint Backlog.. 132
6.8. Increment.. 134
6.9. Scrum Events.. 135
6.10. Sprint... 138
6.11. Daily Scrum...140
6.12. Sprint Review..142
6.13. Sprint Retrospective.. 143
6.14. Backlog Refinement.. 145
6.15. Scrum Workflow.. 147
7. Software Testing Life Cycle... 151
7.1. Test Conception Stage...153
7.2. Test Planning Stage... 154
7.3. Test Design Stage...156

7.4. Test Development Stage...157

7.5. Test Execution Stage...159

7.6. Test Closure Stage... 160

7.7. Test Maintenance.. 162

8. Test Documentation... 165

8.1. Checklist.. 167

8.2. Test Case or Test Scenario.. 170

8.3. Test Script and Test Data.. 174

8.4. Test Suite...178

8.5. Test Plan..180

8.6. Test Strategy...182

8.7. Test Policy... 184

8.8. Test Management Systems...185

2

9. Software Quality Defects.. 187

9.1. Defect Classification..189

9.2. Defect Life Cycle.. 191

9.3. Defect Report... 193

10. Software Testing Classification.. 196

10.1. Software Conception Stage Categories... 197

10.2. Software Planning Stage Categories..202

10.3. Software Design Stage Categories... 205

10.4. Software Development Stage Categories..207

10.5. Software Testing Stage Categories...212

10.6. Software Deployment Stage Categories..216

10.7. Software Maintenance Stage Categories.. 218

10.8 Software Testing Classification Scheme... 220

11. Practice...222

3

I. Software Quality

Assurance History

4

1. Software Quality Assurance
History

Software quality assurance, as a discipline, has evolved over
several decades, and its history can be divided into long-term periods
that reflect significant changes in technology, methodologies, and
practices.

These periods highlight the evolution of software testing from a
manual, ad-hoc activity to a highly automated, AI-driven discipline.

Long-Term Periods
One may differentiate five important Software quality assurance

periods prior to the end of the XXth century:

●​ 1947–1956 — Debugging period
●​ 1957–1978 — Demonstration period
●​ 1979–1982 — Destruction period
●​ 1983–1987 — Evaluation period
●​ 1988–2000 — Prevention period

​ Extending the trend for the XXIth century, one could single out
the next three long-distance SQA testing eras:

●​ 2001–2011 — Test automation period
●​ 2012–2021 — Continuous testing period
●​ 2022–Present — AI-driven testing period

5

1.1. 1947–1956 Debugging period
The primary objective during the Debugging period revolved

around detecting and resolving flaws, or "bugs", within software
programs.

Unlike modern testing paradigms, which emphasize prevention
and systematic validation, early efforts were predominantly centered
on reactive debugging — locating and correcting errors after they
manifested in the code.

Historical Context
This period corresponds to the formative years of computing — a

time when electronic computers transitioned from theoretical
constructs to practical tools capable of executing programmed
instructions.

Software development was in its infancy, and structured
approaches to quality assurance had yet to emerge.

Testing, as a formal discipline, did not exist.

Instead, the process was largely synonymous with debugging —
an ad hoc, trial-and-error method of ensuring that programs
functioned as intended.

Key Characteristics
The key characteristics of the Debugging period are as follows:

●​ Developer-centric debugging — Since specialized testing roles
had not yet been established, programmers themselves were
responsible for verifying their code.

Testing was an intrinsic part of the development cycle rather
than a distinct stage.

6

●​ Absence of formalized tools and techniques — Unlike today’s
sophisticated testing frameworks, early debugging relied on
manual inspection, print statements, and rudimentary diagnostic
methods.

There were no automated testing suites, standardized
methodologies, or dedicated quality assurance teams.

●​ Basic reliability as the primary goal — The chief measure of
success was whether a program executed without crashes or
glaring inaccuracies in output.

The concept of comprehensive validation, such as edge-case
analysis, performance benchmarking, or user experience
evaluation, was not yet a consideration.

Milestones
Below are the main milestones of the Debugging period:

●​ Bug and debugging notions — In 1947, the terms "bug" and
"debugging" were coined when engineers working on the
Harvard Mark II computer discovered an actual moth had got
stuck in a relay, causing it not to make contact.

Grace Murray Hopper detailed the incident in the work log,
pasting the moth with tape as evidence and referring to the moth
as the "bug" causing the error, and to the action of eliminating
the error as "debugging".

●​ Reactive Problem-Solving Mindset — Debugging was perceived
as a corrective measure rather than a preventive one.

Developers addressed issues only after they arose, often in
response to observable failures, rather than proactively
designing tests to uncover hidden defects.

7

Debugging Period Role
This nascent stage of software testing laid the groundwork for

future advancements in quality assurance.

At that time, the tests were focused on the hardware because it
was not as developed as today and its reliability was essential for the
proper functioning of the software.

While primitive by contemporary standards, the emphasis on
debugging established the foundational principle that software must
be scrutinized for errors — a concept that would later evolve into
systematic testing methodologies, specialized tools, and dedicated QA
professions.

8

1.2. 1957-1978 Demonstration
Period

The central objective of the Demonstration period shifted toward
proving that the software operated in strict accordance with its
intended design and specifications.

Unlike the earlier era, where testing was synonymous with
reactive debugging, this period emphasized validation, ensuring that
the software not only ran without errors but also fulfilled its
predefined functional requirements.

Historical Context
As software systems expanded in scale, functionality, and

criticality, the limitations of ad-hoc debugging became increasingly
apparent.

Organizations recognized that merely eliminating crashes was
insufficient — software now needed to meet business and operational
needs for sure.

This era saw the gradual transition from informal, developer-led
error-fixing to a more structured — though still nascent — effort to
verify software correctness.

Testing remained relatively informal compared to modern
standards, but its purpose evolved — shifting from defect correction
to requirement validation.

The focus was no longer solely on "making the program work"
but on demonstrating that it worked as expected under defined
conditions.

9

Key Characteristics
The key characteristics of the Demonstration period are as

follows:

●​ Validation-centric approach — Testing was primarily employed
to affirm that the software executed its intended functions
correctly, rather than aggressively uncovering hidden flaws.

The mindset leaned toward confirmation — "Does it work as
specified?" — rather than investigation — "Where does it fail?".

●​ Defect-averse mindset — The emphasis was on proving the
absence of critical defects, often leading to optimistic
assessments.

Unlike later methodologies that actively sought weaknesses —
for instance, stress testing, boundary analysis, etc — this
approach assumed correctness unless evidence proved
otherwise.

●​ Late-stage testing – Testing was frequently conducted toward
the end of development, often as a final checkpoint before
release.

This "test-last" mentality contrasted with modern iterative
testing, where evaluation occurs continuously throughout the
development lifecycle.

●​ Manual and Ad-Hoc execution — Despite the growing need for
validation, testing lacked standardized methodologies or
automation.

Most checks were performed manually, relying on developer
intuition or rudimentary test cases.

10

Milestones
●​ Tests development — In 1957, Charles Baker explained the

necessity for the test development aimed at ensuring the
software meets its pre-designed requirements.

Thus, the distinction between software functionality control —
Debugging — and software quality maintenance — Testing —
was introduced for the Testing to be carried out as a separate
activity.

●​ Tests importance — Test development became more important
as more expensive and complex applications were being
developed, and the cost of solving all these deficiencies affected
a clear risk to the profitability of the project.

A special focus was placed on increasing the quantity and quality
of tests. For the first time the quality of an application began to
be linked to the state of the testing stage.

The goal of testing was to demonstrate that the software
performed what it had initially been designated for, using
expected and recognizable parameters.

●​ Emergence of Verification and Validation — V&V — The
distinction between verification — "Are we building the product
right?" — and validation — "Are we building the right product?"
— began to take shape.

This framework laid the groundwork for later quality assurance
disciplines.

●​ Continued reliance on manual processes — While the
philosophy of testing matured, practices remained
labor-intensive and unstructured.

11

The absence of systematic test design — e.g., test plans,
coverage metrics — meant that effectiveness varied widely
across projects.

Demonstration Period Role
The Demonstration period represented a critical transition

moving software quality assurance from reactive debugging toward
deliberate validation.

However, the lack of formalized processes and early testing
integration meant that many latent defects still escaped detection
until deployment.

These gaps would later drive the development of methodical
testing frameworks, automated tools, and proactive quality measures
to bridge the debugging and modern testing in subsequent eras.

12

1.3. 1979-1982 Destruction Period
The Destruction period represented a fundamental

transformation in software quality assurance approach, where the
primary objective evolved from proving correctness to actively seeking
and exposing defects.

Testing was no longer viewed merely as a validation step but
rather as a systematic effort to stress, challenge, and intentionally
break the software under controlled conditions.

The underlying premise was that improving software quality
required aggressively identifying weaknesses before release, rather
than passively confirming functionality.

Historical Context
As software systems grew more sophisticated and became more

mission-critical, the limitations of traditional verification-focused
testing became apparent.

A proactive defect-hunting mindset emerged, recognizing that:

●​ Software reliability could not be assumed — it had to be
rigorously challenged

●​ The absence of observed failures did not equate to correctness
— flaws often lay hidden in untested scenarios

●​ Human psychology influenced testing effectiveness —
developers naturally avoided tests that might "break" their code

The Destruction period marked the professionalization of testing
as a distinct discipline, shifting from an optimistic demonstration of
functionality to a pessimistic, investigative process aimed at
uncovering faults.

13

Key Characteristics
●​ Below are the key characteristics of Destruction period:

●​ Formalization of testing — Testing transitioned from an
informal, post-development activity to a structured stage
integrated into the software development lifecycle.

Dedicated test cases, plans, and documentation became
standard, ensuring systematic evaluation rather than ad-hoc
checks.

●​ Methodical testing techniques —- Some techniques represented
early efforts to systematize test design, moving beyond
trial-and-error were initially introduced during the Destruction
period:

○​ Boundary value analysis — BVA — Focused on testing at
the edges of input ranges, where defects frequently cluster

○​ Equivalence partitioning — Reduced redundancy by
grouping inputs that should trigger similar behaviors,
optimizing test coverage

●​ Defect maximization objective — The success of testing was
measured by its ability to expose flaws, not just confirm expected
behavior.

This required creative, adversarial thinking — crafting scenarios
that exploited potential weaknesses in logic, input handling, or
edge cases.

●​ Proactive mindset — Testing was no longer about waiting for
failures to emerge in production but preemptively forcing
failures in development.

This shift reduced the cost and risk of late-stage defect discovery.

14

Milestones
●​ In 1979, Glenford Myers, with the definition below, radically

redefined the procedure for detecting faults in the program:

"Software testing is the process of running a program with the
intention of finding errors."

Myers' concern was that in pursuing the goal of demonstrating
that a program is flawless, one could subconsciously select test
data that has a low probability of causing program failures,
whereas if the goal is to demonstrate that a program is flawed,
our test data will have a greater probability of detecting them
and we will be more successful in testing and thus in software
quality.

From now on, the tests will try to demonstrate that a program
does not work as it should, contrary to how it was done until
then.

This reorientation laid the groundwork for modern testing
theory, prioritizing defect detection over confirmation, leading
to new techniques of testing and analysis.

●​ Destructive testing methodologies — Myers' philosophy
spurred the development of new techniques explicitly designed
to:

○​ Expose hidden assumptions in code
○​ Challenge error-handling robustness
○​ Reveal edge-case vulnerabilities

Testing was no longer a passive checkpoint but an active
quality-improvement mechanism.

15

Destruction Period Role
The Destruction period permanently altered software

engineering practices by establishing core principles that endure today:

●​ Testing must be skeptical — assuming defects exist until proven
otherwise

●​ Quality is achieved through rigorous challenge — not just
affirmation

●​ Test design is a distinct skill — requiring specialized knowledge
beyond coding proficiency

The introduction of structured techniques — BVA, Equivalence
partitioning, etc — and Myers' psychological insights formed the
foundation for subsequent advancements in automated testing,
risk-based testing, and continuous quality assurance.

16

1.4. 1983-1987 Evaluation period
The Evaluation period represented a fundamental transformation

in how the software industry conceptualized and implemented quality
control.

Rather than treating testing as a final gatekeeping activity,
organizations began embracing a comprehensive philosophy of
continuous quality evaluation spanning the entire software
development life cycle.

This paradigm shift moved quality considerations:

●​ From being reactive to being proactive
●​ From being fragmented to being integrated
●​ From being defect-focused to being quality-centric

Historical Context
By the early 1980s, several converging factors necessitated this

evolution:

●​ Increasing software complexity in business and mission-critical
systems

●​ Rising costs associated with post-release defect remediation
●​ Growing recognition that quality cannot be "tested in" but must

be built into the process
●​ Maturing understanding of software engineering as a disciplined

practice

The software industry transitioned its view on testing:

●​ from separate stage to an integrated process
●​ from defect detection tool to a quality assurance mechanism
●​ from final verification step to a continuous evaluation practice

17

Key Characteristics
●​ The key characteristics of the Evaluation period are as follows:

●​ Lifecycle-wide quality assessment — Quality evaluation
became embedded in every Software development life cycle
stage:

○​ Requirements analysis — testability verification
○​ Design — architectural reviews
○​ Development — unit testing
○​ Deployment — system testing
○​ Maintenance — regression testing

The development gained a V-shaped prominence, explicitly
mapping test activities to each development stage.

●​ Formalization of testing practices — Standardized
methodologies emerged — for example, IEEE 829:

○​ Documentation — test plans, cases, procedures — became
mandatory

○​ Metrics were instituted and measurement programs were
developed

○​ Specialized QA roles and organizational structures
developed

●​ Quality assurance as an organizational function — Quality
Assurance became distinct from Testing, encompassing:

○​ Process definition and improvement
○​ Prevention-oriented activities
○​ Organizational quality culture
○​ Metrics and benchmarking

The Quality Gate concept institutionalized checkpoints
throughout the software development lifecycle where specific
quality criteria must be met before a project can progress to the
next stage.

18

●​ Process-driven testing approach:

○​ Repeatable, defined test processes replaced Ad-hoc
methods

○​ Test planning became forward-looking rather than reactive
○​ Traceability matrices linked requirements to test cases
○​ Formal entry and exit criteria governed test stages

Milestones
●​ In 1983, IEEE 829 Standard for Software Test Documentation

established uniform documentation requirements including:

○​ Test plan structure
○​ Test case specifications
○​ Test procedure definitions
○​ Test log requirements
○​ Incident reporting formats
○​ Test summary reporting

The Standard introduced a common language for test
professionals enabling process consistency across organizations.

●​ The advent of Automated testing tools was another significant
achievement of the Evaluation period when:

○​ Early test automation frameworks emerged
○​ Regression testing became practical at scale
○​ The foundation for modern continuous testing was laid

●​ Institutionalization of Quality Metrics introduced:

○​ Defect density measurements
○​ Test coverage percentages
○​ Requirements traceability matrix
○​ Escape defect analysis

These provided quantitative quality assessments.

19

●​ Legacy and Transition to Modern Practices — the Evaluation
Period established foundational concepts that continue to shape
quality practices today:

○​ The principle that quality is a process, not an event
○​ The understanding that testing must be planned and

managed
○​ The recognition that quality requires organizational

commitment
○​ The framework for integrating testing throughout

development

Evaluation Period Role
This era's emphasis on standardization, documentation, and

process orientation directly enabled subsequent innovations like:

●​ Capability Maturity Model — CMM — integration
●​ Agile testing methodologies
●​ Continuous integration/continuous delivery — CI/CD — pipelines
●​ DevOps quality practices

The institutionalization of quality assurance during the
Evaluation period transformed software testing from a technical
afterthought to a professional engineering discipline, establishing
patterns and practices that remain relevant for decades later.

20

1.5. 1988-2000 Prevention period
The Prevention period marked a paradigm shift in software

quality management, transitioning from reactive defect detection to
proactive defect prevention.

The industry recognized that finding bugs late in the software
development cycle was costly and inefficient, leading to a strategic
emphasis on early testing, rigorous process controls, and continuous
improvement.

Testing evolved from being a post-development checkpoint to an
integrated, iterative practice embedded throughout the software
development lifecycle — SDLC.

The goal was no longer just to identify flaws but to prevent them
from occurring in the first place through systematic process
enhancements and early validation.

Historical Context
Several key factors drove this transformation:

●​ Increasing Software Complexity — As applications grew larger
and more interconnected, late-stage defect resolution became
prohibitively expensive

●​ Cost of Late Defects — Studies showed that bugs found after
the software release were 10–100 times more expensive to fix
than those caught early

●​ Demand for Faster Releases — The emergence of
internet-driven business models necessitated shorter
development cycles, making traditional "test-last" approaches
obsolete

●​ Maturity of Software Engineering — The discipline began
adopting formalized best practices inspired by manufacturing
quality control

21

This period saw the professionalization of testing as a strategic
function, rather than a tactical afterthought.

Key Characteristics
●​ The key characteristics of the Prevention period are as follows:

●​ Early and Continuous Testing — or Shift-Left — Testing
activities moved as early as possible in the SDLC with the relevant
practices introduced:

○​ Requirements reviews – Formal inspections to ensure
clarity, completeness, and testability before coding began

○​ Design inspections – Rigorous evaluation of architectural
decisions for potential flaws

○​ Code walkthroughs and Peer reviews – Collaborative
defect prevention via manual code analysis

●​ The practices led to reduced rework by catching ambiguities and
design flaws before implementation.

●​ Process-centric quality assurance:

○​ Quality Gates — Mandatory checkpoints — at the end of
each stage and alike — to enforce standards

○​ Standardized methodologies — Adoption of frameworks
like Capability Maturity Model and Agile Iterative
Development which enabled continuous feedback via
incremental testing

○​ Metrics-driven improvement – Defect density, escape
rates, and test coverage became key performance
indicators

●​ Tooling and Automation advancements:
○​ Static analysis tools — Automated code review for early

defect detection, for instance, linting tools
○​ Test automation frameworks — Dedicated software

testing automation and software quality assurance
products emerged

22

○​ CI/CD precursors — Early Continuous Integration and
Continuous Development tools enabled frequent validation

●​ Cultural shift toward quality ownership:

○​ Shared responsibility — Developers, testers, and business
analysts collaborated on quality

○​ Prevention mindset — Teams focused on getting it right
the first time rather than relying on downstream testing

Milestones
●​ Formalization of Shift-Left testing — Testing early and often

principle became a cornerstone of modern SDLCs and influenced
later methodologies like Continuous Testing

●​ Rise of Agile iterative development:

○​ Scrum — 1995 — and Extreme Programming — XP, 1996
— methodologies embedded testing into short cycles

○​ Test-Driven Development — TDD — emerged as a
prevention-focused practice

●​ Growth of Testing tools and frameworks

●​ Industry Standards Expansion:

○​ ISO 9000-3 — 1997 — Provided QA guidelines for software
development

○​ IEEE 1012 — 1998 — Standardized verification and
validation processes

Prevention Period Role
The Prevention Period laid the groundwork for the future

software quality assurance process enhancements:

●​ DevOps — Merging development and operations with quality as
a shared goal

23

●​ Shift-Right — Complementing early testing with production
monitoring

●​ Quality Engineering — Beyond "testing", encompassing
design-for-quality principles

This period's emphasis on prevention, automation, and process
discipline remains central to contemporary software engineering,
proving that proactive quality assurance is far more effective than
reactive debugging.

24

1.6. 2001-2011 Test Automation
Period

The first decade of the XXIth century marked a transformative
period in software quality assurance, characterized by the widespread
adoption of automation and the emergence of new testing paradigms.

As software systems grew in complexity and release cycles
accelerated, manual testing became increasingly impractical.

This period saw the industrialization of testing through
automation frameworks, agile-aligned methodologies, and early
AI-assisted tools — laying the foundation for modern DevOps and
continuous testing practices.

Historical Context
Several key drivers fueled the shift to systematic and intelligent

testing focused on efficiency and scalability:

●​ Explosion of Web applications — The dot-com boom and Web
2.0 demanded cross-browser compatibility and 24/7 reliability

●​ Agile adoption — Shorter development cycles required faster
feedback loops via automation

●​ Cost Pressure — Studies showed automation could reduce
regression testing effort by more than a half

●​ API-Centric Architectures — Service-Oriented Architecture —
SOA — made API testing a critical need

25

Key Characteristics
Below are the key innovations and methodologies of the

Automation era:

●​ Test-Driven Development — TDD — Writing tests before code
greatly reduced defect rates and forced modular, testable
software design

●​ Behavior-Driven Development — BDD — Bridged business-IT
gaps using natural-language specifications using human-readable
syntax, aligned testing with user stories, and Enabled
non-technical stakeholders to validate logic

●​ The Selenium revolution — 2004 — Selenium WebDriver, which
solved browser automation with cross-browser support and
language-agnostic bindings became the de facto standard for
web UI testing

●​ API testing maturity — The shift from UI-centric to API
validation enabled early — shifted left — integration testing and
performance benchmarking

●​ Cloud-based testing platforms — Eliminated lab maintenance
costs and provided real-device testing, which is critical for mobile
development

Automation Period Role
The Automation period transformed testing from a manual job to

a strategic, tech-driven discipline — proving that Quality at Speed was
achievable through innovation.

26

1.7. 2012-2021 Continuous
Testing Period

The period between 2012 and 2021 marked a revolutionary shift
in software development and testing, driven by the widespread
adoption of DevOps principles and Continuous Testing.

This era was defined by the convergence of development — Dev,
testing — QA, and operations — Ops, transforming traditionally
isolated functions into a collaborative, automated pipeline.

The primary goal was to accelerate software delivery while
maintaining high quality, achieved through automation, infrastructure
innovation, and cultural change.

Historical Context
Several industry trends necessitated this evolution:

●​ Demand for faster releases — The rise of cloud computing and
Software as a Service models required continuous deployment,
that is daily or hourly releases

●​ Microservices architecture — Distributed systems increased
complexity, making End-to-End testing more challenging

●​ Agile at scale — Large organizations adopted Scrum, Kanban,
and Scrum agile framework — SAFe, — requiring testing to keep
pace with rapid iterations

●​ Cost of manual processes — Manual testing bottlenecks
appeared to significantly delay releases.

This period saw the death of the "throw-it-over-the-wall"
mentality, replacing it with shared ownership of quality.

27

Key Characteristics
●​ Shift-Left, or Early Testing:

○​ Testing moved earlier in the SDLC, with developers writing
Unit tests, Integration tests, and API tests alongside code

○​ Test-Driven Development, TDD, and Behavior-Driven
Development, BDD, became standard in Agile teams

●​ Shift-Right, or Production Testing, extended Testing into
production via Real-user monitoring — or RUM, — A/B Testing,
and other techniques

●​ Infrastructure as Code — IaC:

○​ Containerization tools — such as Docker, 2013 —
revolutionized testing by:

■​ Packaging apps and dependencies into lightweight,
portable containers

■​ Enabling consistent test environments, eliminating
"works on my machine" issues

○​ Orchestration tools — such as Kubernetes, 2014 —
automated container governance, allowing scalable test
clusters

○​ IaC Tools — such as Terraform, Ansible — automated
environment provisioning, reducing setup time from days
to minutes

●​ CI/CD pipelines and Automated testing — Continuous
integration and Continuous development tools allowed
automating:

○​ local and in-cloud Build-Test-Deploy cycles
○​ parallel test execution across environments

28

●​ Site Reliability Engineering — SRE — emerged, blending
Operations and Quality Assurance.

Continuous Testing Period Role
This period democratized testing, making it every engineer’s

responsibility rather than a QA-only task.

It transformed testing from a slow, manual process to a fast,
automated, and intelligent practice.

By integrating testing into CI/CD, infrastructure, and monitoring,
it laid the groundwork for today’s autonomous, AI-enhanced practices
giving the birth for Continuous Quality.

Continuous testing became a necessity rather than an option,
ensuring that software kept pace with the demands for rapid delivery
and high user expectations.

It proved that speed and quality are not trade offs, but mutually
achievable goals.

29

1.8. 2022-Present AI-Driven
Testing

The current testing period, Artificial Intelligence — AI — and
Machine Learning — ML — are fundamentally redefining how testing is
conceived, executed, and optimized.

AI-driven testing — or AI-powered testing — is the use of
Artificial Intelligence and Machine Learning to automate and enhance
software testing processes.

No longer confined to scripted validations, testing has evolved
into an intelligent, predictive, and self-improving process that spans
the entire software lifecycle.

Historical Context
Several converging trends have accelerated this transformation:

●​ AI maturation — Breakthroughs in deep learning enabled
practical applications beyond research labs

●​ Testing complexity crisis — With systems becoming more
complex, traditional methods became economically
unsustainable

●​ Generative AI explosion — The 2022 ChatGPT release proved
AI's potential to create test artifacts, not just analyze them

Key Characteristics
Key Technologies Behind AI-Driven Testing are:

●​ Machine Learning — ML — Improves test scripts over time by
learning from past executions

30

●​ Natural Language Processing — NLP — Converts plain-text
requirements into automated test cases

●​ Computer Vision — Uses image recognition for UI testing, for
instance, identifying dynamic elements

●​ Predictive Analytics — Identifies high-risk areas needing more
testing

Milestones
The key characteristics of the AI-Driven Testing are as follows:

●​ Self-Healing Test Automation — Traditional tests broke due to:

○​ Dynamic UIs
○​ Environment inconsistencies
○​ Flaky network conditions

AI Tools use ML to:

○​ Detect when element locators change
○​ Automatically update selectors while maintaining test

intent
○​ Learn from corrections to improve future resilience

​ This reduces test maintenance, enabling sustainable automation
at scale.

●​ Visual validation with Computer vision:

○​ Traditional tools validated HTML structure
○​ Visual AI tools use convolutional neural networks — CNNs

— to detect visual regressions at pixel level and ignore
non-impactful changes

●​ ML-powered test impact analysis — ML tools can:

○​ Analyze code changes via static analysis
○​ Map modifications to affected test cases

31

○​ Prioritize test execution based on historical defect data,
code complexity metrics, and business criticality

●​ Codeless automation tools lower the automation barrier the
following ways:

○​ Use Natural language processing — NLP — to translate
plain languages to test scripts

○​ Provide visual modeling interfaces
○​ Auto-generate maintenance scripts

As a result, codeless automation:

○​ Enables subject matter experts to create tests
○​ Reduces automation skills gap
○​ Accelerates test coverage expansion

AI-Driven Testing Period Role
The current era does not just change how we test, but what it

means to deliver quality software in an AI-driven world.

The organizations thriving in this new paradigm are those
treating quality as a strategic differentiator rather than a compliance
checkpoint.

Unlike traditional scripted automation, AI-driven testing
leverages intelligent algorithms to:

●​ Generate test cases
●​ Self-heal test scripts
●​ Predict defects
●​ Optimize test coverage
●​ Analyze test results

As a result, the most obvious benefits of AI-Driven Testing are:

●​ Faster Test Creation — AI generates tests from requirements or
user behavior

32

●​ Reduced Maintenance — Self-healing tests minimize script
updates

●​ Smarter Test Execution — Prioritizes critical test cases
●​ Improved Accuracy — Reduces false positives and negatives
●​ Enhanced Test Coverage — AI explores edge cases humans

might miss

While not a complete replacement for human testers, AI
significantly reduces manual effort and improves software reliability.

AI will not replace testers in the nearest future.

But testers who use AI may definitely replace those who don’t.

33

II. Software Quality

34

2. Software Quality

Quality
Quality is a set of inherent properties of an object that allows it

to satisfy implicit or explicit needs.

Software quality
Software quality is the degree to which a software reliably

performs its intended operations without errors or deviations from
specified requirements.

It should mean that the application is free from vulnerabilities,
either intentionally designed into the software or accidentally inserted
at any time during its lifecycle.

Assurance
Assurance is a positive declaration on a product or service, which

gives confidence.

It provides a guarantee that the product works correctly as per
the expectations or requirements.

Quality Assurance
Quality assurance — QA — is a way of preventing defects in

created products and avoiding problems when delivering products or
services to customers.

Quality assurance focuses on improving the development process
and making it efficient and effective as per the quality standards
defined for products.

35

Software quality assurance
Software quality assurance — SQA, or QA — is the constant

coordination of the engineering processes aimed to safeguard proper
quality of the software and its compliance against the defined
standards.

Software quality assurance engineer
Software quality assurance engineer — SQAE — is a specialist

focused on ensuring the software quality against the requirements and
standards during all stages of the software development process.

36

2.1. Software Quality Scopes
Software quality encompasses three critical scopes, each playing

a distinct role in delivering reliable products:

●​ Software quality testing is the activity aimed at detecting issues
in the product and executing systematic checks to identify
defects, covering functional, performance, and security
validations

●​ Software quality control is a terminal process of issues
detection in a product before it is delivered to end users which
involves defect scanning through inspections, reviews, and
real-time monitoring

●​ Software quality assurance is a process which assures that all
software engineering processes, methods, activities, and work
items are monitored, streamlined and comply with the defined
standards

37

Together, these scopes form a holistic quality framework
ensuring software meets both technical requirements and user
expectations efficiently:

●​ Testing identifies defects and verifies correctness
●​ Control monitors quality and enforces compliance
●​ Assurance prevents defects and improves processes

By integrating all three, organizations achieve higher reliability,
reduced costs, and sustained customer trust.

38

2.2. Software Quality Testing
Software Quality Testing is an evaluation-oriented activity

designed to ensure a software application meets specified
requirements, functions correctly, and delivers a high-quality user
experience.

It involves identifying defects, verifying functionality, and
assessing performance, security, usability, and reliability.

Testing can be performed by a tester or a dedicated team of
testers.

This process may also include a stage of test planning.

Key Objectives
Software quality testing is driven by several key objectives that

collectively ensure the delivery of a robust and reliable product.

These objectives include:

●​ Defect detection — to systematically identify and document
bugs, errors, and inconsistencies prior to release

●​ Requirements validation — to verify that the final software
product aligns with all defined business objectives and user
requirements

●​ Performance evaluation — to assess critical non-functional
attributes such as speed, scalability, and stability under expected
load conditions

●​ Security assurance — to proactively identify security
vulnerabilities and ensure the software is protected against
potential threats and breaches

39

●​ Usability verification — to evaluate the user interface and
experience, ensuring the software is intuitive, efficient, and
satisfactory for the end-user

●​ Compliance verification — to confirm that the software adheres
to all applicable industry standards, legal regulations, and
internal policies

Software Testing Role
The primary purpose of testing is to detect software failures so

that defects may be discovered and corrected.

Software quality testing:

●​ Reduces risks of software failures
●​ Improves experience of the customer
●​ Lowers costs of the long-term maintenance
●​ Ensures compliance with industry regulations

The role of software testing often means the examination of
code as well as its execution in various environments and conditions
being guided by the following statements:

●​ Testing cannot establish that a product functions properly under
all conditions

●​ Testing can only establish that it does not function properly
under specific conditions.

By implementing rigorous testing processes, organizations can
deliver reliable, secure, and high-performing software products.

40

2.3. Software Quality Control
Software Quality Control — SQC — is a verification-oriented

activity designed to identify and correct software defects by verifying
adherence to predefined quality standards.

SQC focuses on detecting deviations from requirements through
systematic testing, reviews, and inspections before the product
reaches users.

Key Objectives
The main Quality Control objectives are as follows:

●​ Defect detection — Finding bugs, errors, or non-conformities in
code, design, or documentation

●​ Standards compliance — Ensuring alignment with functional
requirements, industry standards, and organizational guidelines

●​ Process enforcement — Validation the development workflows,
including coding practices and testing protocols, are followed

Key Activities
Software Quality Control activities usually include:

●​ Testing — Execute test cases to uncover functional or
non-functional defects

●​ Peer Reviews — Manual examination of code or documents by
team members

●​ Static Analysis — Automated checks for code quality issues
without execution

●​ Dynamic Analysis — Software behavior monitoring during
runtime

●​ Audits — Formal inspections to verify compliance with processes
and standards

41

Quality Control Role
During the software quality control, testing team verifies the

product's compliance with the functional requirements and this way:

●​ Reduces post-release failures — crashes, security breaches, etc
●​ Saves costs — avoiding the defects post-launch correction which

is many times more expensive
●​ Builds user trust — by delivering reliable, high-quality software

42

2.4. Software Quality Assurance

Software Quality Assurance
Software quality assurance — SQA, or QA — is a planned and

integral validation-oriented activity focused on meeting requirements
for a product's quality aimed at further quality system improvement.

SQA assures that all software engineering processes, methods,
activities, and work items are monitored, streamlined, and comply with
the defined standards.

Software Quality Assurance incorporates all software
development processes starting from defining requirements to coding
until release.

Key Role
Software Quality Assurance is based on engineering processes

that guarantee quality in a more efficient way than Software Quality
Control.

Software Quality Testing and Software Quality Control are able
to detect the major amount of issues in the product but this doesn't
mean that these defects won't take place again.

The role of SQA is to re-engineer the system so that further
occurrence of these defects won't happen; in fact, it may not include
any testing at all.

The prime goal of the Software Quality Assurance is to ensure
the quality of software products or services provided to the customers
by an organization.

43

Quality Control and Quality Assurance
Software Quality Control is distinct from Software Quality

Assurance.

Software Quality Control is a validation of artifacts' compliance
against established criteria — finding defects.

Software Quality Assurance encompasses processes and
standards for ongoing maintenance of high quality products, for
instance, software deliverables, documentation, and processes —
avoiding defects.

The difference between Software Quality Control and Software
Quality Assurance may be stated as follows:

●​ SQC is a product oriented activity
●​ SQA is a process oriented activity

Software Quality Control keeps track of software development
results to comply with requirements.

Software Quality Assurance traces all the software development
processes to follow in due manner.

44

2.5. Software Quality
Characteristics

Software quality characteristics — often called Quality
Attributes or Non-Functional Requirements — are the measurable
properties of a software system that define its fitness for the purpose,
customer experience, and adherence to requirements.

The main software quality characteristics

45

These characteristics serve as benchmarks to evaluate how well
the software performs, behaves, and meets stakeholder expectations.

Functionality
Functionality is the ability of a software to bear specified

properties.

Functionality embraces:

●​ Suitability
●​ Integrity
●​ Security
●​ Accuracy, and other properties

Usability
Usability is the capability of a software to be easily understood

and applied.

Usability comes over:

●​ Operability
●​ Learnability
●​ Accessibility
●​ Attractiveness, and so on

Efficiency
Efficiency is the relationship between the level of software

performance and the amount of resources needed.

Efficiency involves:

●​ Capacity
●​ Time behavior
●​ Resource utilization

46

●​ Effectiveness, and so forth

Reliability
Reliability is the ability of software to continue functioning

under stated conditions over a given period of time.

Reliability spans:

●​ Recoverability
●​ Availability
●​ Stability
●​ Consistency, etc

Maintainability
Maintainability is the effort needed to make specified

modifications.

Maintainability takes in:

●​ Scalability
●​ Reusability
●​ Modularity
●​ Testability, and others

Portability
Portability is the ability of the software to be transferred from

one environment to another.

Portability reaches out to:

●​ Installability
●​ Replaceability
●​ Compatibility
●​ Coexistence, etc

47

Key Role
Understanding and prioritizing software quality characteristics is

a fundamental activity in software engineering.

48

2.6. Entry and Exit Criteria
Criterion is a principle or standard to judge something.

Each stage of the Software development and Software testing
life cycle has its own Entry and Exit criteria.

Entry Criteria
Entry criteria are the criteria which must be met before initiating

a specific development or testing stage.

It is a predefined set of conditions that must exist before a unit
of development or testing work can commence.

It is used as a process control mechanism to determine the
cost-effectiveness of initiating stage activities.

The team should enter the next stage only after the exit criteria
for the previous one is met.

Exit Criteria
Exit criteria are the criteria which must be met before

completing a specific development or testing task or a process.

It is a predefined set of conditions that must exist before a unit
of development or testing work can be deemed completed.

It is used as a process control mechanism to verify that a
development or testing stage has been completed and that its
products are of acceptable quality.

Exit criteria define the deliverables to be completed before the
stage to be left.

49

III. Software

Development Life Cycle

50

3. Software Development Life
Cycle

Software Development Life Cycle — SDLC — is a process of
software production with intent to design, develop and test an
application of the highest quality, at lowest cost, and in the shortest
time possible.

SDLC — also called Software development process, SDP — may
be named a framework to define tasks performed at each step of the
software production.

SDLC Stages
Software development efforts are structured into several stages

and the Software Development Life Cycle serves to encompass them.

The Cycle does not conclude until all the requirements have been
fulfilled, and will continue until all the potential needs are adjusted
within the system.

SDLC provides a well-structured flow of stages that help an
organization to quickly produce high-quality, well-tested, and ready for
production use software.

Software Development Life Cycle consists of a detailed
consequence of steps describing how to develop, maintain, alter, and
replace specific software, and includes the following stages:

1.​ Software Conception
2.​ Software Planning
3.​ Software Design
4.​ Software Development
5.​ Software Testing
6.​ Software Deployment
7.​ Software Maintenance

51

Benefits
SDLC works by lowering the cost of software development while

simultaneously improving quality and shortening production time.

SDLC achieves these apparently divergent goals by following a
plan that removes the typical pitfalls of software development
projects.

52

SDLC has a strong focus on the testing stage — being a repetitive
methodology, it ensures code quality at every cycle.

The biggest advantage of the Software Development Life Cycle is
that it provides control of the development process to a certain extent
and ensures the system complies with all the requirements that have
been specified.

Drawbacks
SDLC does not work so well where there are levels of uncertainty

or unnecessary overheads.

It directs the development efforts with an emphasis on planning,
but the system does not encourage creative input or innovation
throughout the lifecycle.

53

3.1. Software Conception Stage
Software Conception is the stage where end user business

requirements are analyzed and project goals converted into defined
system functions that the organization intends to develop.

That's the reason for it to be also called Software Ideation or
Requirements Analysis stage.

Requirements Analysis
Conducted during the Conception stage, Requirements Analysis

is the foundation of successful software development as it ensures the
final product aligns with business goals, user needs, and technical
feasibility.

The Requirements Analysis is indispensable for the following
main reasons:

●​ Defines clear project scope:

○​ prevents scope creep avoiding uncontrolled feature
additions

○​ sets priorities distinguishing must-have and nice-to-have
features

●​ Aligns stakeholders:

○​ bridges gaps between developers, clients, and end-users of
the software

○​ reduces miscommunication with documented requirements
serving as a single source of truth

●​ Identifies risks early:

○​ technical feasibility uncovers impractical demands
○​ regulatory compliance flags legal needs

54

●​ Saves time and cost:

○​ fixes during conception cost much less than fixes in
development and many times more than post-release fixes

●​ Drives design and testing:

○​ guides architecture determining whether to use
microservices, monoliths, or serverless

○​ forms test cases directly from requirements

●​ Ensures user-centric outcomes:

○​ user stories or use cases capture real-world workflows
○​ avoids useless features which are rarely or never used

Key Activities
The Requirements Analysis is performed by the senior members

of the team with inputs from the customer, sales department, market
surveys and domain experts in the industry.

The Requirements Analysis and elicitation consists of the
following primary activities:

●​ Stakeholder Interviews — Input gathering from clients, users, and
business teams

●​ Market Research — Competitors and industry standards analysis

Entry and Exit Criteria
The main triggering events for the software conception include:

●​ Business Need Identification — Recognition of a problem or
opportunity

●​ Strategic Initiative — Alignment with organizational goals
●​ Stakeholder Request — Formal request from business units
●​ Technological Opportunity — Leveraging new technologies

55

The deliverables which signify software readiness for the next
stage depend on the project management approach and may include:

●​ Business requirements document — BRD — a high level
business goals specification which elicits a set of business
functionalities that the software needs to meet in order to
succeed

●​ Software requirements specification — SRS — the document to
clearly define and record the software requirements and get
them approved by the customer or the market analysts

●​ Functional requirements document — FRD — the specification
which includes detailed system behaviors

●​ User stories and Use cases — the documents to describe
features from an end-user perspective

Software requirements specification is commonly treated as the
key document of the software Conception stage.

56

3.2. Software Planning Stage
Software Planning is the stage where the project's vision, scope,

and feasibility are formally defined before any development begins.

This stage sets the trajectory for the entire project, ensuring
alignment between stakeholders, realistic expectations, and a clear
roadmap for execution.

Primary Goals
The primary goals of the Planning stage include:

●​ Defining project scope — what will and won’t be built
●​ Assessing feasibility — technical, economic, operational
●​ Estimating costs, timelines, and resources
●​ Identifying risks and mitigation strategies
●​ Establishing stakeholder alignment
●​ Creating a formal project plan

Key Activities
The Planning Stage consists of the following primary activities:

●​ Feasibility Study — a structured analysis to determine if the
project is viable, which answers the following questions:

○​ Technical Feasibility — Can it be built with chosen
technology?

○​ Economic Feasibility — How expensive will the product be?
○​ Operational Feasibility — Will end-users adopt the solution?
○​ Legal Feasibility — Does it comply with regulatory rules?

●​ Scope Definition:

○​ In-Scope or Out-of-Scope — Clear definition of the project
boundaries

57

○​ Work Breakdown Structure — WBS — Hierarchical
decomposition of deliverables

○​ Scope Statement — Formal agreement to prevent "scope
creep"

●​ Risk Assessment and Mitigation:

○​ Risk Identification — Potential threats definition
○​ Risk Analysis — Impact and likelihood evaluation
○​ Mitigation Strategies — Contingency planning for

high-priority risks

●​ Resource Planning:

○​ Team Structure — Developers, testers, PMs and other roles
with their responsibilities

○​ Technology Stack — Programming languages, frameworks,
databases

○​ Budget Estimation — Development, testing, infrastructure,
and maintenance costs

●​ Timeline and Milestone Planning:

○​ Gantt Charts and Roadmaps — Visual timelines for each
SDLC stage

○​ Agile Sprints — Sprint durations and backlog priorities
definition

○​ Critical Path Method — CPM — Identification of the tasks
that could delay the project

●​ Selection of Development Methodology — SDLC model choice
based on the project needs

●​ Approval and Kickoff:

○​ Project Charter — Authorizes the project and allocates
resources

○​ Stakeholder Sign-Off — Formal agreement on scope,
budget, and timeline

58

○​ Kickoff Meeting — Aligns all teams on objectives and
processes

The outcome of the technical feasibility study is to define the
various technical approaches that can be followed to create the app
successfully.

The comprehension of quality assurance requirements and
identification of the risks associated with the project are the crucial
tasks of the planning stage either.

Entry and Exit Criteria
The previous stage deliverables serve as a natural trigger for the

software Planning stage to begin.

The following deliverables of the Planning stage, in its turn, serve
as a sign to exit the stage:

●​ Project plan — Provides overall roadmap with timelines,
milestones, and resources

●​ Feasibility report — Justifies project viability: technical,
financial, legal

●​ Risk management plan — Identifies risks and mitigation
strategies

●​ Scope statement — Defines project boundaries and exclusions
●​ Resource allocation plan — Details team structure, tools, and

budget
●​ Communication plan — Specifies how stakeholders will receive

updates: meetings, reports, etc.

Planning Stage Role
The Planning Stage is the cornerstone of successful software

development, transforming abstract ideas into actionable strategies.

59

By investing time in thorough planning, teams can avoid common
pitfalls, optimize resources, and deliver projects on time and within
budget.

60

3.3. Software Design Stage
Software Design is the stage to describe the desired features

and operations of the system.

The aim of the Design stage is to figure out the type of clients
and servers necessary for technical feasibility of the system.

Key Activities
The stage consists of the following primary activities:

●​ System architecture design
●​ IT infrastructure design

Software design may include:

●​ Hierarchy diagrams
●​ Screen layouts for user interfaces
●​ Entity-relationship diagrams — ERD
●​ Process diagrams
●​ Data dictionaries
●​ Business rules
●​ Pseudo code

— and other necessary insights gathered under the Software
design specification.

Primary Goals
The Design stage has to describe a system as a collection of

modules — or subsystems — according to requirements identified in
the approved Software requirements specification.

Software design is to clearly define all architectural modules of
the product along with its communication and data flow
representation with the external and third party modules.

61

Exit Criteria
The completed Software Design Specification is the main exit

criterion during the software Design stage.

Software design specification — SDS — is the representation of
software design dedicated to store the design information, address
various concerns, and to communicate the collected data to the design
stakeholders.

The Software design specification often called:

●​ Software design description
●​ Software design document
●​ just a Design document

 — includes, as a rule, an Architecture Diagram with reference to
the smaller pieces of design.

62

3.4. Software Development Stage
Software Development is the stage where abstract designs and

requirements are transformed into functional, executable code.

The primary objective of the Development stage is to translate
detailed design specifications into a working software product through
systematic programming, while ensuring code quality, maintainability,
and alignment with requirements.

The Development stage includes following primary components
to be evolved:

●​ Code
●​ Databases
●​ Infrastructure

Key Activities
The primary Development stage activities should usually include:

●​ Coding or Programming — Writing source code in chosen
programming languages — Java, Python, C#, JavaScript, etc

●​ Unit Testing — Developers test individual components, called
modules, to ensure they work correctly in isolation

●​ Code Review — Peer examination of code to improve quality,
share knowledge, and detect defects early

●​ Version Control — Managing code changes using systems like
Git, SVN, or Mercurial

●​ Integration — Combining individual software modules into a
complete system

63

The supplementary Development stage activities may also
include:

●​ Database Implementation — Creating and populating databases
according to design specs

●​ API Development — Building internal and external interfaces

●​ Configuration Management — Managing environment-specific
settings and parameters

●​ Debugging — Identifying and fixing code-level defects

Software and hardware are to be purchased and installed during
this stage either.

Inputs and Outputs
The developers base their work on the following inputs:

●​ Detailed Design Documents — Technical specs, database
schemas, API contracts

●​ UI/UX Designs — Wireframes, mockups, style guides

●​ Architecture Diagrams — System components and their
interactions

●​ Development Environment Setup — Servers, IDEs, tools

The main deliverables of Development stage usually include:

●​ Source Code — Version-controlled, documented codebase

●​ Unit Test Cases and Results — Automated tests with pass/fail
reports

●​ Technical Documentation — Code comments, API
documentation

●​ Build Artifacts — Executable files, packages, containers

64

Programming languages
During the Development stage the programming language — PL

— is chosen according to the type of the software developed.

To generate the code, developers must also follow the coding
guidelines defined by their organization and such programming tools
like compilers, interpreters, and debuggers.

Exit Criteria
The Development stage has its distinct definition of done:

●​ All features implemented according to specifications
●​ Unit tests written and passing with the target coverage met
●​ Code review completed for all changes
●​ Integration testing successful
●​ Technical documentation updated
●​ Ready for the upcoming Testing stage

65

3.5. Software Testing Stage
Software Testing is the stage dedicated to systematically

evaluate and validate that a software meets specified requirements,
functions correctly, and delivers a quality user experience.

Testing activities are mostly involved in all stages of the Software
development life cycle.

Testing stage, however, refers to the product testing only.

The Software Testing stage serves as a primary Quality Gate
before release to production as the defects are searched and managed
until the product reaches the quality conditions defined in the
Software requirements specification.

Key Activities
During the Testing stage, all pieces of code are integrated and

deployed in the dedicated environment for the QA engineers to check
the software for errors, flaws, and defects and to verify it functions as
expected.

Testing stage includes the following primary activities:

●​ Test Planning and Design:

○​ Test Strategy Development — Overall approach and
objectives definition

○​ Test Case Creation — Detailed test scenarios with steps and
expected results design

○​ Test Data Preparation — Test datasets creation and
management

○​ Test Environment Setup — Hardware, software, and
networks configuration

66

●​ Test Execution and Evaluation:

○​ Test Case Execution — Test runs according to created test
plans

○​ Defect Reporting — Identified issues being logged, tracked,
and managed

○​ Results Analysis — Outcomes against expected results
evaluation

○​ Regression Testing — Verification that new changes don't
break existing functionality

●​ Test Reporting and Closure:

○​ Test Summary Reports — Testing activities and outcomes
documentation

○​ Metrics Collection — Test coverage, defect density, etc data
gathering

○​ Exit Criteria Evaluation — Software is ready for release
estimation

Testing Metrics and Measurements
Software testing metrics are quantitative measures used to

evaluate the effectiveness, efficiency, progress, and quality of the
testing process.

They provide data-driven insights to make informed decisions,
identify improvement areas, and assess testing performance against
objectives:

●​ Test Coverage — Percent of requirements covered by test cases
●​ Defect Density — Number of defects per size or metric
●​ Test Case Effectiveness — Percent of defects found by test cases
●​ Defect Leakage — Defects found post-release vs during testing

67

Entry and Exit Criteria
Entry Criteria define when Testing stage can begin:

●​ Requirements are stable and approved
●​ Development is substantially complete
●​ Test environment is ready
●​ Test cases are prepared and reviewed

Exit Criteria determine when Testing stage is to conclude:

●​ All critical and major defects are resolved
●​ Test coverage targets are met
●​ Performance and security benchmarks are achieved
●​ Stakeholder approval obtained

Testing Stage Role
Testing is the crucial part of software development life cycle

which can save a lot of rework, time, and money.

To provide quality software, an organization must perform
testing in a systematic way.

68

3.6. Software Deployment Stage
Software Deployment is the stage where the validated

application is released and made operational in the production
environment enabling end-users to access and use the system.

The Deployment stage, also called:

●​ Delivery stage
●​ Implementation stage
●​ Installation stage

— represents the transition from development to operational
use in the appropriate market.

Key Activities
The Deployment stage commonly includes following key

activities:

●​ Pre-Deployment Preparation:

○​ Deployment Planning — Create detailed rollout strategy,
schedule, and rollback plans

○​ Environment Setup — Configure servers, databases,
networks, and security settings

○​ Final Verification — Conduct smoke tests and sanity checks
in production-like staging

○​ Backup Creation — Backup existing systems and data
before deployment

○​ Stakeholder Communication — Notify users, support
teams, and stakeholders about upcoming changes

69

●​ Deployment Execution:

○​ Package Deployment — Install application binaries,
libraries, and dependencies

○​ Database Migration — Execute SQL scripts, data transfers,
and schema updates

○​ Configuration Application — Set environment-specific
parameters and settings

○​ Integration Activation — Enable connections to external
systems and Application program interfaces, APIs

○​ Service Initialization — Start application services and
background processes

●​ Post-Deployment Validation:

○​ Health Checks — Verify all services are running correctly

○​ Functional Testing — Confirm critical business functions
work in production

○​ Performance Validation — Ensure response times meet
Service Level Agreement, SLA, requirements

○​ User Access Testing — Verify authentication and
authorization mechanisms

○​ Monitoring Setup — Configure alerts, logs, and
performance monitoring

Deployment Strategies
​ The Deployment strategies include:

●​ Traditional approaches:

○​ Big-Bang Deployment — Complete system replacement at
once

70

○​ Parallel Deployment — Old and new systems run
simultaneously

○​ Incremental Deployment — Roll out by modules, regions, or
user groups

●​ Modern — Continuous Deployment — approaches:

○​ Blue-Green Deployment — Two identical environments to
switch traffic between them

○​ Canary Release — Gradually expose new version to small
user subset

○​ Feature Flags — Deploy code with features toggled off to
enable them gradually

○​ Rolling Deployment — Incrementally update instances
while maintaining service

Entry and Exit Criteria
The prerequisites for Deployment to begin are as follows:

●​ All testing stages completed successfully
●​ Stakeholder approval obtained — business sign-off
●​ Production environment prepared and validated
●​ Rollback plan documented and tested
●​ User documentation and training completed

​ The Deployment completion prerequisites are as follows:

●​ Application successfully running in production
●​ All integration points functioning correctly
●​ Performance benchmarks met
●​ Monitoring and alerting operational
●​ Support teams trained and ready
●​ Post-deployment review conducted

71

3.7. Software Maintenance Stage
Software Maintenance is the stage for adjustments,

amendments, and enhancements designated to keep software
updated, operable, and performant after its initial deployment.

Key Objectives
The primary goal of the Maintenance Stage is to recurrently

update and upgrade software to adapt it for the future challenges.

As a whole, Maintenance is mostly aimed to:

●​ Correct Issues — Identify and fix bugs discovered in production
●​ Adapt to Changes — Modify software to work in changing

environments
●​ Enhance Functionality — Add new features and improve existing

capabilities
●​ Prevent Degradation — Optimize performance and address

technical debt
●​ Ensure Continuity — Maintain compatibility with evolving

platforms and standards

Key Activities
The Maintenance stage activities may be divided into the

following categories:

●​ Corrective Maintenance:

○​ Defect Resolution — Fix bugs and errors reported by users

○​ Emergency Fixes — Address critical issues affecting system
availability

○​ Patch Management — Deploy small, focused updates

72

●​ Adaptive Maintenance:

○​ Platform Updates — Adapt to new operating systems,
hardware, or cloud platforms

○​ Third-Party Integration — Maintain compatibility with
external systems

○​ Regulatory Compliance — Address legal and regulatory
requirements

●​ Perfective Maintenance:

○​ Performance Optimization — Improve speed, efficiency,
and resource usage

○​ Usability Enhancements — Improve user interface and
experience

○​ Feature Additions — Implement new functionality based on
user feedback

●​ Preventive Maintenance:

○​ Code Refactoring — Restructure code without changing
functionality

○​ Technical Debt Reduction — Address shortcuts taken
during development

○​ Documentation Updates — Keep documentation current
with system changes

Maintenance Models
Maintenance models may be divided into the following groups:

●​ Traditional Models:

○​ Quick-Fix Model — Immediate repairs without detailed
analysis

73

○​ Iterative Enhancement — Cyclical improvement through
analysis, redesign

○​ Reuse-Oriented — Leverage existing components for
maintenance

●​ Modern Approaches:

○​ Agile Maintenance — Regular maintenance sprints with
user feedback

○​ DevOps Maintenance — Integrated development and
operations teams

○​ AI-Driven Maintenance — Predictive analytics for issue
prevention

Maintenance Stage Role
Software Maintenance is not merely about fixing bugs but

encompasses a strategic, ongoing process of keeping software
valuable, secure, and aligned with business needs.

The most successful organizations treat maintenance as a
strategic investment rather than a necessary cost.

Effective maintenance requires balancing reactive support with
proactive improvement, ensuring that software continues to deliver
value throughout its lifecycle.

Maintenance is not the final stage but is a soft return to the
Conception stage with the intent of further enhancements on the next
level of the Software development life cycle.

74

3.8. SDLC Models
Software Development Life Cycle models are shortly referred to

as Software Development Process Models.

Software Development Process Model — SDPM — is a
structured framework that defines the sequence of activities, tasks,
and workflows for developing software products.

SDPM provides a systematic approach to transforming user
requirements into functional software while managing constraints like
time, cost, and quality.

Each SDPM follows a series of steps unique to its type in order to
ensure the success of the software development flow.

SDPM Approaches
All SDPMs may be classified into two big categories according to

the development approaches used:

●​ Predictive
●​ Adaptive

Predictive SDPMs
Predictive SDPMs — or Plan-Driven SDPMs — are the models

which assume that requirements can be fully defined at the beginning
of the project and will remain relatively stable during development.

They focus on analyzing and planning the future in detail and
cater for known risks. In the extremes, a predictive team can report
exactly what features and tasks are planned for the entire length of
the development process.

Predictive models rely on effective early-stage analysis and if the
stage fails, the project may face difficulties while changing direction.

75

Adaptive SDPMs
Adaptive SDPMs — or Value-Driven SDPMs — are the models

which recognize that requirements evolve during development and
emphasize flexibility, collaboration, and continuous improvement.

They focus on adapting quickly to changing realities — when the
needs of a project change, an adaptive team changes as well.

An adaptive team has difficulty describing exactly what will
happen in the future — the further away a date is, the more vague an
adaptive model is about what will happen on that date.

76

IV. Predictive SDPMs

77

4. Predictive SDPMs
As the name suggests, Predictive SDPM assumes one can predict

the complete workflow.

It involves fully understanding the final product and determining
the process for delivering it.

In this form of project life cycle, one determines the cost, scope,
and timeline in the early stages of the project.

Benefits
The main benefits of Predictive SDPMs are as follows:

●​ It is easy to understand and follow as each stage is initiated after
the previous one is completed

●​ The laid down instructions and concise workflow makes it easier
for the developers to work within a specified budget and
timeframe

●​ If everything goes as planned it enables organizations to assume
the expected project budget and timelines

●​ Each stage has specific timelines and deliverables which makes it
easier for teams to operate and monitor the entire project

●​ The main concern of a predictive approach is to develop and
maintain the specifications of the final product

This makes it ideal for projects where all the requirements are
defined and well understood with a clear vision of the final product.

Within the Predictive approach, there are minimal expected
changes as the work is already predicted and well-known.

The team has a clear idea of exactly where the project is heading
and how to follow the sequence.

78

Drawbacks
The main drawbacks of the Predictive approach are as follows:

●​ Working software is produced at a later stage, which leads to
delayed identification of bugs and vulnerabilities in the
application

●​ Organizations often have to bear additional costs of delayed
applications if bugs are discovered in the testing stage of the
project

●​ Complex projects are poorly manageable: it is not suitable for
dynamic projects that entail flexible requirements or uncertainty
in the end product

To sum up, a predictive approach can be extremely rigid,
requiring developers to maintain strict and rigorous standards
throughout the life cycle.

Since the sequence of the work is already predetermined, any
subsequent changes can be very costly and time-consuming.

Predictive models
Below are the most important predictive Software Development

Process Models:

●​ Big Bang Model
●​ Waterfall Model
●​ Incremental Model
●​ Iterative Model
●​ Spiral Model
●​ V-Model

79

4.1. Bing Bang Model
Big Bang Model is a process of software development focusing

on all types of resources in software development and coding, with no
or very little planning.

The requirements are understood and implemented when they
come.

Key Characteristics
The Big Bang Model is an SDPM following no specific process or

procedure and there is very little planning required.

The development starts with the money and efforts required as
the input, and the software developed — as the output.

Even the customer may not be sure about his requirements and
they are implemented on the fly without much analysis.

Usually the Big Bang Model is followed for small projects where
the development teams are very small.

Key Activities
The Big Bang Model focuses all the possible resources on the

software development, with very little or no planning.

The requirements are understood and implemented as they
appear; any changes required may or may not need to revamp the
complete software.

This model is ideal for small projects with one or two developers
working together and is also useful for academic or practice projects.

It is also an ideal model for the product where requirements are
not well understood and the final release date is not given.

80

Benefits
The Big Bang Model is:

●​ Simple — Requires very little or no planning
●​ Manageable — Requires no formal procedure
●​ Affordable — requires very few resources
●​ Flexible — Requires lesser qualification

To conclude, the Big Bang model is ideal for repetitive or small
projects with minimum risks.

81

Drawbacks
The main Drawbacks of the Big Bang Model are as follows:

●​ There are very high risk and uncertainty
●​ It excludes complex and object-oriented projects
●​ It rejects long and ongoing projects
●​ It may become very expensive if requirements are misunderstood

So, the Big Bang Model is of a very high risk as misunderstood or
changed requirements may lead to complete reversal or scrapping of
the project.

82

4.2. Waterfall Model
Waterfall Model is a process of software development that

divides the whole software development life cycle into various stages.

The Waterfall SDPM was the first model to be introduced in 1970
by Winston Royce and is also referred to as a Linear-sequential SDPM.

Key Activities
Waterfall model is a sequential SDPM that divides software

development into pre-defined stages.

Each stage is designed for a specific activity and must be
completed before the next stage can begin with no overlap between
the stages.

Applicability
Every software is different and requires a suitable SDPM to be

followed based on the internal and external factors.

Some situations where the use of Waterfall Model is most
appropriate are:

●​ Requirements are thoroughly documented, clear, and fixed
●​ Technologies and tools involved are familiar and consistent
●​ Experienced resources are available and ample
●​ Application is simple and compact
●​ Software environment is stable
●​ Project term is concise

83

Benefits
The Waterfall model is the earliest SDPM that was used for

software development, it is very simple to understand and use.

Some of the major advantages of the Waterfall Model are as
follows:

●​ Clearly defined stages
●​ Well understood milestones

84

●​ Easily to arrange tasks
●​ Well documented processes
●​ Ready to manage resources
●​ Deliverables at every stage
●​ One at a time stage run
●​ Handily reviewed results

Drawbacks
The major disadvantages of the Waterfall Model are as follows:

●​ Intensive untested documentation
●​ Operating software appears late in SDLC, hence, testing stage

starts too late
●​ Project changes are unpredictable
●​ Risk and uncertainty are of high levels
●​ Complex or object-oriented projects are excluded
●​ Long and ongoing projects are incapable
●​ Projects of changing requirements are poorly managed
●​ Project run requires environment stability support
●​ Integration is complicated and hassled
●​ Stage progress is difficult to measure
●​ Technological bottlenecks are poorly identifiable
●​ Business challenges are difficult to overwhelm

85

4.3. Incremental Model
Incremental Model is a process of software development where

requirements are broken down into multiple standalone modules of
software development life cycle.

Key Activities
Incremental SDPM may be treated as a series of waterfall cycles.

The requirements are divided into groups at the start of the
project; for each group, the Incremental model is followed to develop
software.

Process
Each release adds more functionality until all requirements are

met; every cycle serves the maintenance stage for the previous
release.

Incremental Model modifications allow the development cycles
to overlap, so that a subsequent cycle may begin before the previous
one is complete.

Iterations
Each iteration passes through the next four stages:

●​ Requirements Analysis
●​ Design
●​ Coding
●​ Testing

and each subsequent release of the system adds function to the
previous release until all designed functionality has been implemented.

86

87

Procedure
The software is put into production when the first increment is

delivered.

The first increment is often a core product where the basic
requirements are addressed, and supplementary features are added in
the next increments.

Once the core product is analyzed by the client, there is a
development for the next increment.

Model Characteristics
The main Incremental Model characteristics include:

●​ Software development is broken down into many mini
development projects

●​ Partial systems are successively built to produce a final total
system

●​ Highest priority requirement is tackled first
●​ Once the requirement is developed, requirement for that

increment are frozen

Applicability
Incremental Model may be used when:

●​ Software requirements are clearly understood
●​ Early release of a product is of significant value
●​ There are features and goals of considerable risk
●​ Developers are not highly skilled or trained
●​ Software is developed by product company
●​ Application is web based and may seamlessly be updated

88

Benefits
The main advantages of the Incremental Model are as follows:

●​ High speed of development
●​ High flexibility
●​ Lower expenses
●​ Changes are possible
●​ Customer can respond to each building
●​ Errors are easy to be identified

Drawbacks
Below are the main pitfalls of the Incremental Model:

●​ farsighted planning is required
●​ each iteration cycle is rigid enough
●​ any unit bugfix influences all the software
●​ bugfixes are numerous and consume a lot of time

89

4.4. Iterative Model
Iterative Model — or Evolutionary Acquisition Model — is the

process of software development which starts with an implementation
of a small simple subset of requirements and iteratively enhances the
evolving versions until the complete application is implemented and
ready to be deployed.

Key Activities
The Iterative SDPM does not attempt to start with a full

specification of requirements.

Instead, development begins by specifying and implementing just
part of the software, which is then reviewed to identify further
requirements.

This process is then repeated, producing a new version of the
software at the end of each iteration of the model.

At each iteration, design modifications are made and new
functional capabilities are added.

The basic idea behind this method is to develop a system through
repeated, iterative, cycles and in smaller, incremental, portions at a
time.

Workflow
Iterative Model is a combination of iterative design and

incremental development.

During software development, more than one iteration of the
software development cycle may be in progress at the same time.

90

Builds
Iterative Model implies all the requirements are divided into

various builds.

During each iteration, the module developed goes through the
requirements analysis, design, implementation, and testing stages.

Each subsequent release of the module adds a new functionality
to the previous one.

91

The process continues until the complete system is ready as per
the requirement.

Testing Role
The key features of the Iterative Model are rigorous validation of

requirements, and both verification and testing of each version of the
software against those requirements within each iteration.

As the software evolves through successive cycles, tests must be
repeated and extended to verify each version of the software.

Applicability
Like other SDPMs, Iterative development has some specific

applications in the software industry.

This model is most often used in the following scenarios:

●​ Product requirements are clearly defined and understood
●​ New technologies are to be adopted by development team
●​ Certain functionalities or requested enhancements may evolve

during project
●​ Features and goals of a high risk may appear in the future
●​ Specific iterations' resources are to be outsourced

Benefits
The main advantage of the Iterative Model is the operating

software gained at the earliest stages of development.

The operating software, in particular, makes it easier to find
functional or design flaws.

The flaws found early in the life cycle enable developers to save
budget while software adjustments are applied.

92

All the advantages of the Iterative Model are as follows:

●​ Large and mission-critical projects are performable
●​ Operating software appears early in the life cycle
●​ Customer enjoyment, evaluation, and feedback start shortly
●​ Every increment delivers a new software functionality
●​ The results obtained are immediate and periodical
●​ Each iteration serves a manageable milestone
●​ Software development progress is measurable
●​ Parallel development is enabled
●​ Smaller iterations simplify testing and debugging
●​ Requirement changes are easily governed at lesser expences
●​ Issues, challenges, and risks found may be treated incrementally
●​ Iterated risk analysis, identification, and resolution is steadier
●​ High risks may be managed first

Drawbacks
The main drawback of the Iterative Model is it only fits large

software development projects: breaking a small system into further
small serviceable increments or modules is hard.

Other disadvantages of the Iterative Model are as follows:

●​ Model may require more resources to apply
●​ Often requirement changes keep the adoption cost high
●​ Serious system architecture or design issues may arise
●​ Management attention is of a greater need and complexity
●​ Risk analysis requires highly skilled resources
●​ Progress is highly dependent on the risk analysis stage
●​ Increment definitions redefine the complete system
●​ Risky level of uncertainty at the end of the project
●​ Model is poorly suitable for smaller projects

93

4.5. Spiral Model
Spiral Model is the combination of Iterative Model with the

systematic, controlled aspects of the sequential linear development
inherent to the Waterfall Model.

In other words, the model is a conjunction of Iterative and
Waterfall Models with a distinct emphasis on risk analysis.

It allows incremental releases of the product — or Incremental
Refinement — through each iteration around the spiral.

Spirals
The Spiral SDPM includes the four stages described below.

A software project repeatedly passes through these stages in
iterations called Spirals.

Based on the customer evaluation, the software development
process enters the next iteration and subsequently follows the linear
approach to implement the feedback suggested by the customer.

The process of iterations along the spiral continues throughout
the life of the software.

1. Identification
This stage starts with gathering the business requirements in the

baseline spiral.

In the subsequent spirals, as the product matures, identification
of system, subsystem, and unit requirements are all done in this stage.

This stage also includes understanding the system requirements
by continuous communication between the customer and the system
analyst.

94

At the end of the spiral, the product is deployed in the identified
market.

2. Design
The Design stage starts with the conceptual design in the

baseline spiral and involves architectural design, logical modules
design, physical product design and the final design in the subsequent
spirals.

3. Construct or Build
The Construct stage refers to production of the actual software

product at every spiral.

In the baseline spiral, when the product is just thought of and the
design is being developed a Proof of Concept — POC — is developed in
this stage to get customer feedback.

In the subsequent spirals with higher clarity on requirements and
design details a working software model, called Build, is produced with
a version number.

These Builds are sent to the customer for feedback.

4. Evaluation and Risk Analysis
Risk Analysis includes identifying, estimating and monitoring the

technical feasibility and management risks, such as schedule slippage
and cost overrun.

After testing the Build, at the end of the first iteration, the
customer evaluates the software and provides feedback.

95

Key Activities
Each stage of the Spiral Model in software engineering begins

with a design goal and ends with the client reviewing the progress.

The development process starts with a small set of requirements
and goes through each of the Waterfall Model stages.

The software engineering team adds functionality for the
additional requirement in every-increasing spirals until the software is
ready for the production stage.

Benefits
The advantage of the Spiral Model is that it allows elements of

the product to be added in when they become available or known.

This assures that there is no conflict with previous requirements
and design.

96

This method is consistent with approaches that have multiple
software builds and releases which allows making an orderly transition
to a maintenance activity.

Another positive aspect of this method is that the Spiral model
forces an early user involvement in the system development effort.

Else advantages of the Spiral model are as follows:

●​ Model allows extensive use of prototypes
●​ Fragmented prototype building simplifies the cost estimation
●​ Continuous repeated development streamlines the risks

management
●​ Faster development and more regular improvements
●​ Customers gain the system early for use and feedback
●​ Requirement changes are easily accommodated
●​ Requirements are gathered more accurately
●​ Additional functionality may be shifted for a later stage
●​ Development may be divided into smaller parts
●​ Risky parts of software may be developed earlier

Drawbacks
The main disadvantage of the Spiral Model is that it takes a very

strict management to complete such apps and there is a risk of running
the Spiral in an indefinite loop.

The discipline and the extent of taking change requests is very
important to develop and deploy the product successfully.

Other disadvantages of the Spiral Model are as follows:

●​ Schedule or budget discrepancies are of a high probability
●​ A lot of intermediate stages requires excessive documentation
●​ Model protocol should be followed strictly to smooth operation
●​ The process and its management are more complex
●​ Risk assessment expertise is obvious for the model
●​ Spiral development suits best the large projects only

97

●​ Mismatches the smaller projects due to excessive costs
●​ Low risk projects misfit the model due to unnecessary complexity
●​ Spiral may continue indefinitely

Applicability
The Spiral Model is widely used in the software industry as it is in

sync with the natural development process of any product — learning
with maturity which involves minimum risk for the customer as well as
the development firms.

The following pointers explain the typical uses of a Spiral Model:

●​ Project is large
●​ Releases are to be frequent
●​ Customer feedback is necessary
●​ Prototype creation is possible
●​ Risk evaluation is important
●​ Budget constraints are weighty
●​ Business priority changes are often
●​ Project is of a medium or high risk
●​ Requirements are foggy, variable, or complex
●​ Project revision may happen any time
●​ Significant changes are expected

98

4.6. V-Model
V-Model is an extension of the Waterfall SDPM and is based on

the association of a testing stage for each corresponding development
stage.

The model consists of Verification and Validation stages, and is
also known as Verification and Validation Model.

Key Activities
V-Model is the SDPM where process execution happens in a V

shape.

It means that every development activity has its directly
associated testing stage done in parallel in a sequential way.

This is a highly disciplined model where the next stage starts only
after completion of the previous one.

Verification Stages
There are several Verification stages in the V-Model, each of

these are explained in detail below.

1. Business Requirements Analysis
This is the first stage in the development cycle where the product

requirements are understood from the customer's perspective.

This stage involves detailed communication with the customer to
understand his expectations and exact requirements.

This is a very important activity and needs to be managed well, as
most of the customers are not sure about what exactly they need.

99

The acceptance test design planning is done at this stage as
business requirements can be used as an input for acceptance testing.

2. System Design
Once the product requirements are clear and detailed, it is time

to design the complete system.

The system design will have the understanding and detailing the
complete hardware and communication setup for the product under
development.

The system test plan is developed based on the system design.

Doing this at an earlier stage leaves more time for the actual test
execution later.

3. Architectural Design
Architectural specifications are understood and designed in this

stage.

Usually more than one technical approach is proposed and based
on the technical and financial feasibility the final decision is taken.

The system design is broken down further into modules taking up
different functionality.

This is also referred to as High Level Design — HLD.

The data transfer and communication between the internal
modules and with the outside world — other systems — is clearly
understood and defined in this stage.

With this information, integration tests can be designed and
documented during this stage.

100

4. Module Design
At this stage, the detailed internal design for all the system

modules is specified, referred to as Low Level Design — LLD.

It is important that the design is compatible with the other
modules in the system architecture and the other external systems.

The unit tests are an essential part of any development process
and help eliminate the maximum faults and errors at a very early stage.

These unit tests can be designed at this stage based on the
internal module designs.

5. Coding Stage
The actual coding of the software modules designed during the

Design stage is taken up in the Coding stage.

The best suitable programming language is decided based on the
system and architectural requirements.

The coding is performed based on the coding guidelines and
standards.

The code goes through numerous code reviews and is optimized
for best performance before the final build is checked into the
repository.

Validation Stages
The different Validation stages in a V-Model are explained in

detail below.

101

102

1. Unit Testing
Unit tests designed in the module Design stage are executed on

the code during this validation stage.

Unit testing is the testing at code level and helps eliminate bugs
at an early stage, though all defects cannot be uncovered by unit
testing.

2. Integration Testing
Integration testing is associated with the Architectural design

stage.

Integration tests are performed to test the coexistence and
communication of the internal modules within the system.

3. System Testing
System testing is directly associated with the System design

stage.

System tests check the entire system functionality and the
communication of the system under development with external
systems.

Most of the software and hardware compatibility issues can be
uncovered during this system test execution.

4. Acceptance Testing
Acceptance testing is associated with the Business requirements

analysis stage and involves testing the product in a user environment.

Acceptance tests uncover the compatibility issues with the other
systems available in the user environment.

103

It also discovers the non-functional issues such as load and
performance defects in the actual user environment.

Benefits
The main advantage of the V-Model is that it is very easy to

understand and apply.

The simplicity of this model also makes it easier to manage.

All advantages of the V-Model are as follows:

●​ Simple and easy to understand and apply
●​ Easy to manage due to the rigidity of the model
●​ Each stage has specific deliverables and a review process
●​ Allows smaller projects where requirements are well understood
●​ Stages are completed one at a time

Drawbacks
V-Model is not flexible to changes, which are common in a

dynamic world, and the disadvantage is the greatest one.

The case requirement changes happen, it is very expensive to
implement them.

All disadvantages of the V-Model are as follows:

●​ risk and uncertainty are of a high level
●​ complex and object-oriented projects are prevented
●​ long and ongoing projects are excluded
●​ projects where requirements are at a middle or high risk of

changing are rejected
●​ at testing stage, the application is difficult to go back and change

a functionality
●​ working software is absent until the closure of the life cycle

104

Applicability
V-Model applicability greatly resembles the one of the Waterfall

model, as both models are of the sequential type.

Requirements have to be very clear before the project starts,
because it is usually expensive to go back and make changes.

This model is often used in the medical development field, a
strictly disciplined domain.

The following pointers are some of the most suitable scenarios to
use the V-Model application:

●​ requirements are well defined, clearly documented and fixed
●​ product definition is stable
●​ technology is not dynamic and is well understood by the project

team
●​ there are no ambiguous or undefined requirements
●​ the project is short in time

105

V. Adaptive SDPMs

106

5. Adaptive SDPMs
Adaptive SDPMs are the models which recognize that

requirements evolve during development and emphasize flexibility,
collaboration, and continuous improvement.

Adaptive SDPM have a mix of incremental and iterative
development.

It involves adding features incrementally and making changes
and refinements according to the feedback.

In other words, the work can easily adapt to the changing
requirements based on new feedback received from the client.

Key Element
A key element of an Adaptive SDPM is that while it defines

certain milestones throughout the SDLC, it also allows flexibility to
achieve them.

Adaptive SDPM focuses on achieving the desired end goal by
quickly adapting the dynamic business requirements.

It puts more focus on the present requirement and leaves room
for future scope of the project.

Agility
All adaptive SDPMs are collectively referred to as Agile methods,

after the Agile Manifesto was published in 2001.

The Agile thought had started early in the software development
and got popular due to its flexibility and adaptability.

107

Agile Methods
Following are the most popular Agile Methods:

●​ Rapid application development — RAD
●​ Rapid prototyping
●​ Dynamic systems development
●​ Rational unified process
●​ Scrum
●​ Crystal Clear
●​ Extreme programming
●​ Feature driven development

Scrum is by far the most popular and de facto standard Agile
development method, most likely because it's easy to implement and
maintain.

108

5.1. Agile Methodology
Agile methodology is a combination of iterative and incremental

process models with focus on process adaptability and customer
satisfaction by rapid delivery of working software products.

Activities
Agile methods break the product into small incremental builds.

These builds are provided in iterations.

Each iteration typically lasts from about one to three weeks.

Every iteration involves cross functional teams working
simultaneously on various areas like:

●​ Planning
●​ Requirements analysis
●​ Design
●​ Coding
●​ Unit testing
●​ Acceptance testing

At the end of the iteration, a working product is displayed to the
customer and important stakeholders.

Time Boxes
Agile methodology believes that every project needs to be

handled differently and the existing methods need to be tailored to
best suit the project requirements.

In Agile, the tasks are divided into Time Boxes — small frames of
time — to deliver specific features for a release.

109

Iterative approach is taken and working software build is
delivered after each iteration.

Each build is incremental in terms of features.

The final build holds all the features required by the customer.

110

5.2. Agile Methods
Agile methods are being widely accepted in the software world.

However, these methods may not always be suitable for all products.

Below are some benefits and drawbacks of the Agile
methodology.

Benefits
The main advantages of the Agile methodology are as follows:

●​ Convenient teamwork and cross training
●​ Fast working solutions development and demonstration
●​ Minimal resource requirements
●​ Ready for fixed or changing requirements
●​ Steadily changed environments adoption
●​ Concurrent development and delivery enabled
●​ Minimum of planning, rules, and documentation
●​ Real flexibility for developers and simple management

Drawbacks
The main disadvantages of the Agile methodology are as follows:

●​ Poor handling for complex dependencies
●​ Sustainability, maintainability, and extensibility are at high risks
●​ Overall plan, leader, and Project manager are obvious
●​ Strict delivery deadlines for adjustments and added functionality
●​ Heavy dependency on customer interaction
●​ Challenging technology transfer and high individual dependency

due to the documentation deficiency

111

5.3. Agile Manifesto

Agile Touchstones
Following are the touchstones of Agile Manifesto:

●​ Individuals and interactions over Processes and tools
●​ Working software over Comprehensive documentation
●​ Customer collaboration over Contract negotiation
●​ Responding to change over Following a plan

Agile Principles
Following are the principles behind the Agile Manifesto:

●​ Our highest priority is to satisfy the customer through early and
continuous delivery of valuable software

●​ Welcome changing requirements, even late in development
●​ Agile processes harness change for the customer's competitive

advantage
●​ Deliver working software frequently, from a couple of weeks to a

couple of months, with a preference to the shorter timescale
●​ Business people and developers must work together daily

throughout the project
●​ Build projects around motivated individuals. Give them the

environment and support they need, and trust them to get the
job done

●​ The most efficient and effective method of conveying
information to and within a development team is face-to-face
conversation

●​ Working software is the primary measure of progress
●​ Agile processes promote sustainable development. The sponsors

developers, and users should be able to maintain a constant pace
indefinitely

112

●​ Continuous attention to technical excellence and good design
enhances agility

●​ Simplicity — the art of maximizing the amount of work not done
— is essential

●​ The best architectures, requirements, and designs emerge from
self-organizing teams

●​ At regular intervals, the team reflects on how to become more
effective, then tunes and adjusts its behavior accordingly.

113

5.4. Rapid Application
Development

Rapid application development — RAD — is the software
development method based on prototyping and iterative development
with no specific planning involved.

Key Activities
Rapid Application Development focuses on:

●​ Gathering customer requirements through workshops or focus
groups

●​ Early testing of the prototypes by the customer using iterative
concept

●​ Reuse of the existing prototypes — components
●​ Continuous integration and rapid delivery
●​ Routine operations automation
●​ Visual prototype programming

Key Objectives
Rapid application development is a software development

methodology that uses minimal planning in favor of rapid prototyping.

A Prototype is a working model that is functionally equivalent to
a component of the product.

In the RAD model, the functional modules are developed in
parallel as prototypes and are integrated to make the complete
product for faster product delivery.

Since there is no detailed preplanning, it makes it easier to
incorporate the changes within the development process.

114

Workflow
RAD projects follow an iterative and incremental model and have

small teams of developers, domain experts, customer representatives
and other IT resources working progressively on their component or
prototype.

The most important aspect for this model to be successful is to
make sure that the prototypes developed are reusable.

Benefits
The main advantages of the RAD Model are as follows:

●​ Requirement changes may be accommodated
●​ Progress can be measured
●​ Iteration time can be short with use of powerful rad tools
●​ Productivity with fewer people in a short time
●​ reduced development time
●​ Increases reusability of components
●​ Quick initial reviews occur encouraging customer feedback
●​ Integration from very beginning solves a lot of integration issues

Drawbacks
The main disadvantages of the RAD Model are as follows:

●​ Dependency on technically strong team members for identifying
business requirements

●​ Only system that can be modularized can be built using RAD
●​ requires highly skilled developers and designers
●​ High dependency on modelling skills
●​ Inapplicable to cheaper projects as cost of modelling and

automated code generation is very high
●​ Management complexity is more suitable for systems that are

component based and scalable

115

●​ Requires user involvement throughout the life cycle
●​ Suitable for projects requiring shorter development times

Applicability
The RAD model can be applied successfully to the projects in

which clear modularization is possible.

If the project cannot be broken into modules, RAD may fail.

The following pointers describe the typical scenarios where RAD
can be used:

●​ System can be modularized to be delivered incrementally
●​ There is a high availability of designers for modelling
●​ Budget permits use of automated code generating tools
●​ Domain experts are available with relevant business knowledge
●​ Requirements changes and working prototypes are to be

presented to customer in small iterations of 2-3 months

RAD model enables rapid delivery as it reduces the overall
development time due to the reusability of the components and
parallel development.

RAD works well only if highly skilled engineers are available and
the customer is also committed to achieve the targeted prototype in
the given time frame.

If there is commitment lacking on either side the model may fail.

116

5.5. Rapid Prototyping
Rapid Prototyping refers to the building of software prototypes

which display the functionality of the developed application.

The prototype, though, may not actually hold the exact logic of
the original software.

Rapid Prototyping becomes very popular, as it enables the team
to understand customer requirements at an early stage of
development.

It also helps software designers and developers to get customer
feedback and understand what exactly is expected from the product
built.

Key Activities
Prototype is a working model of software with some limited

functionality.

The Prototype does not always hold the exact logic used in the
actual software application and is an extra effort to be considered
under effort estimation.

Prototyping is used to allow the users evaluate developer
proposals and try them out before implementation.

It also helps understand the requirements which are user specific
and may not have been considered by the developer during product
design.

Key Objectives
Software prototyping should only be used when the efforts

spent in building the prototype add considerable value to the final
software developed.

117

Benefits
The main advantages of the Rapid Prototyping are as follows:

●​ Increased user involvement in the product even before its
implementation

●​ Since a working model of the system is displayed, the users get a
better understanding of the system being developed

●​ Reduces time and cost as the defects can be detected much
earlier

●​ Quicker user feedback is available leading to better solutions
●​ Missing functionality, confusing or difficult functions can be

identified easily

Drawbacks
The main disadvantages of the Rapid Prototyping are as follows:

●​ Risk of insufficient requirements analysis owing to too much
dependency on the prototype

●​ Users may get confused in the prototypes and actual systems
●​ Practically, this methodology may increase the complexity of the

system as scope of the system may expand beyond original plans
●​ Developers may try to reuse the existing prototypes to build the

actual system, even when it is not technically feasible
●​ The effort invested in building prototypes may be too much if it is

not monitored properly

Applicability
Rapid Prototyping is of the greatest value for development of

the software having high levels of user interactions, such as online
applications.

Systems which need users to fill out forms or go through various
screens before data is processed can use prototyping very effectively

118

to give the exact look and feel even before the actual software is
developed.

Software that involves too much data processing and most of the
functionality is internal with very little user interface does not usually
benefit from prototyping.

Prototype development could be an extra overhead in such
projects and may need a lot of extra effort.

119

5.6. Scrum
Scrum is an Agile — lightweight, iterative, and incremental —

framework for developing, delivering, and sustaining complex
products.

It is designed for teams of ten or fewer members, who break
their work into iterations, called sprints, no longer than one month and
most commonly two weeks.

The Scrum team tracks progress in 15-minute time-boxed daily
meetings, called Daily Scrums.

At the end of the Sprint, the team holds Sprint Review, to
demonstrate the work done, and Sprint Retrospective to improve
continuously.

Scrum Principles
Scrum framework enables teams to self-organize by encouraging

physical colocation or close online collaboration of all team members,
as well as daily face-to-face communication among all team members
and disciplines involved.

A key principle of Scrum is the dual recognition that customers
may change their minds about what they want or need — producing
requirements volatility — and that there will be unpredictable
challenges for which a predictive approach is not suited.

As such, Scrum adopts an evidence-based empirical approach –
accepting that the problem cannot be fully understood or defined up
front, and instead focusing on how to maximize the team's ability to
deliver quickly, to respond to emerging requirements, and to adapt to
evolving technologies and changes in market conditions.

120

VI. Scrum Framework

121

6. Scrum Framework
Scrum is a feedback-driven empirical approach underpinned by

transparency, inspection, and adaptation.

Transparency means that every process, workflow, or progress
within the Scrum framework should be visible to those responsible for
the outcome.

Frequent Inspection of the product being developed and how
well each one performs is the best way to make processes visible for
the whole team.

Adaptation, based on the Frequent Inspection, is the ability of
the team to spot the initial goal deviations and to adjust the
development process.

Scrum Values
Scrum framework emphasizes five core values that guide the

work, actions, and behavior of Scrum Team members:

●​ Focus — keeps the Team focused on its goal avoiding other work
●​ Respect — makes members respecting each other as skilled

professionals
●​ Openness — agrees the Team and Stakeholders to be open about

their job
●​ Commitment — helps every member to commit in achieving the

common goal
●​ Courage — allows the Team to do right things facing the tough

issues

122

6.1. Scrum Team
The Scrum Team is the fundamental unit of the Scrum

framework — a cohesive group of professionals working together to
deliver valuable, high-quality outcomes through collaboration and
iterative progress.

Scrum Team Structure

123

A Scrum Team consists of three key roles, each with distinct
responsibilities:

●​ Product Owner — Represents stakeholders, defines priorities,
and ensures the team delivers maximum business value

●​ Scrum Master — Acts as a facilitator, removing obstacles and
fostering an environment where the team can work efficiently

●​ Development Team — A self-organizing, cross-functional group
of professionals who design, build, and test the product
increment

Core Principles
Scrum thrives on transparency, collaboration, and continuous

improvement.

To succeed, the team must:

●​ Align on a shared goal — Every member contributes toward a
unified objective

●​ Uphold Scrum values — Commitment, courage, focus, openness,
and respect

●​ Communicate frequently — Daily interactions (e.g., stand-ups,
sprint reviews) ensure alignment and adaptability

By fostering a culture of trust, accountability, and adaptability,
the Scrum Team maximizes efficiency and delivers meaningful results
in each sprint.

124

6.2. Product Owner
Product Owner — PO — is the representative of the product

Stakeholders and a Customer responsible for the positive business
results.

Product Owner defines the software functionalities in
customer-centric terms — typically, User Stories — and prioritizes them
according to their importance for the software.

A Scrum Team should have only one Product owner, although a
Product owner could support more than one team.

Key Activities
Product Owner is focused on the business side of the software

development consolidating efforts of the Stakeholders and the Scrum
team.

Product Owner does not indicate how the Scrum team reaches a
technical goal, but rather seeks accordance amid the Scrum team
members.

The role is crucial and requires a deep understanding of both
sides, Business and Developers, within the Scrum team.

Key Objectives
A good product owner should be able to communicate what the

business needs, select the best ways to achieve their objectives, and
convey the message to all stakeholders including the developers using
technical language, as required.

The Product Owner uses Scrum's empirical tools to manage
highly complex work, while controlling risk and achieving value.

125

Key Responsibilities
Communication is a core responsibility of the product owner.

The ability to convey priorities and empathize with team
members and stakeholders is vital to steer product development in the
right direction.

The product owner role bridges the communication gap between
the team and its stakeholders, serving as a proxy for stakeholders to
the team and as a team representative to the overall stakeholder
community.

Tasks
As the face of the team to the stakeholders, the following are

some of the communication tasks of the product owner to the
stakeholders:

●​ Define and announce releases
●​ Communicate delivery and team status
●​ Share progress during governance meetings
●​ Share significant risks, impediments, dependencies, and

assumptions — RIDA — with stakeholders
●​ Negotiate priorities, scope, funding, and schedule
●​ Ensure that the software outlook is visible, transparent, and clear

126

6.3. Scrum Master
Scrum Master is the person accountable for removing the

holdbacks on the way of the Team to achieve the development goals
and deliverables.

Scrum Master ensures the team follows the Scrum framework
principles facilitating the key sessions and encouraging the team to
improve.

Key Responsibilities
The core responsibilities of a Scrum master include:

●​ Product Owner assistance
●​ Team Support and Empowerment
●​ Coaching the Scrum Team
●​ Creating High-Value Increments
●​ Facilitating Scrum Events

Scrum Master may not have people management responsibilities,
so the role of Product owner should never be combined with that of
the Scrum master.

127

6.4. Development Team
Development Team is the unit to carry out all the tasks required

to build increments of valuable output.

Team members are referred to as Developers.

The term Developer refers to anyone who plays a role in the
development and support of the system or product, and may include:

●​ Analysts
●​ Architects
●​ Data specialists
●​ Designers
●​ Developers
●​ Researchers
●​ QA engineers

— and others.

Team Organization
The Development Team is self-organizing.

While no work should come to the team except through the
Product owner and the Scrum master should protect the team from
too much distraction, the team should still be encouraged to interact
directly with Stakeholders and Customers to gain the maximum of
understanding and immediacy of feedback.

128

6.5. Scrum Artifacts
Scrum Artifacts — also spelled as Artefacts — are information

that a Scrum Team and Stakeholders use to detail the software being
developed, actions to produce it, and the actions performed during the
project.

In the Scrum framework, there are three essential Artifacts that
play a crucial role in ensuring transparency and facilitating effective
collaboration:

●​ Product backlog
●​ Sprint backlog
●​ Increment

These Artifacts provide transparency, guide decision-making, and
serve as a basis for adaptation within the Scrum team and its
Stakeholders.

Product Backlog
Product Backlog is a dynamic list of items that represent the

work needed to build a product.

It includes new features, enhancements, bug fixes, tasks, and
other work requirements.

The Product Owner is responsible for maintaining and prioritizing
the items in the backlog.

The commitment associated with the Product Backlog is the
Product Goal.

Sprint Backlog
Sprint Backlog is a subset of the Product Backlog items selected

for development during a specific time-boxed period called Sprint.

129

The Development team collaboratively decides which items to
include in the Sprint Backlog.

The commitment associated with the Sprint Backlog is the Sprint
Goal.

Increment
Increment is the sum of the work completed during a Sprint that

adds value to the product.

It includes the features, enhancements, and bug fixes that were
developed and meet the Definition of Done.

The commitment associated with the Increment is the Definition
of Done.

130

6.6. Product Backlog
Product backlog is a breakdown of work to be done and contains

an ordered list of product requirements that a Scrum Team maintains
for a product.

The requirements define features, bug fixes, non-functional
requirements, etc — whatever must be done to deliver a viable
product.

Product backlog and the business value of each Product Backlog
Item — PBI — is the responsibility of the Product Owner.

The product owner prioritizes PBIs based on the following
considerations:

●​ Risk
●​ Business value
●​ Item's dependencies
●​ Item's size
●​ Date needed

Key Activities
Typically, the Product Owner and the Scrum Team work together

to develop the breakdown of work. The Product Backlog:

●​ Captures requests to modify a product — including new features,
replacing old features, removing features, and fixing issues

●​ Ensures the developers have work that maximizes business
benefit of the product

Product Backlog evolves as new information surfaces about the
product and about its customers, and so later sprints may address new
work.

131

6.7. Sprint Backlog
The Sprint Backlog is the list of work the team must address

during the next sprint.

The list is derived by the Scrum Team progressively selecting
Product Backlog items in priority order from the top of the Product
Backlog.

Tasks
The Product Backlog items may be broken down into tasks by the

developers.

Tasks on the Sprint Backlog are never assigned — or pushed — to
team members by someone else.

Rather team members sign up for — or pull — tasks as needed
according to the Backlog priority and their own skills and capacity.

This promotes self-organization of the developers.

Task Board
The Sprint Backlog is the property of the developers, and all

included estimates are provided by the developers.

Often an accompanying Task Board is used to see and change the
state of the tasks of the current sprint, like To Do, In Progress and
Done.

132

Re-Prioritization
Once a Sprint Backlog is decided, no additional work can be

added to the Sprint Backlog except by the Team.

Once a Sprint has been delivered, the Product Backlog is
analyzed and re-prioritized if necessary, and the next set of
functionality is selected for the next Sprint.

133

6.8. Increment
Increment is the potentially releasable output of the Sprint that

meets the Sprint goal.

Key Activities
Increment is formed from all the completed Sprint Backlog items,

integrated with the work of all previous Sprints.

Increment must be complete, according to the Scrum Team's
Definition of done — DoD.

Key Objective
Increment should be fully functioning, and in a usable condition

regardless of whether the Product Owner decides to actually deploy
and use it.

134

6.9. Scrum Events
Scrum Events — also called Ceremonies — are the main

activities that occur inside each Sprint iteration to provide structure,
encourage collaboration, and drive continuous improvement within the
Scrum process.

In the Scrum framework, there are five essential Events that play
a crucial role in ensuring transparency, adaptation, and effective
collaboration:

●​ Sprint
●​ Sprint Planning
●​ Daily scrum
●​ Sprint review
●​ Sprint retrospective

Sprint
Sprint is a fundamental time-boxed period when a Scrum Team

collaboratively works to achieve a specific goal.

Sprint serves as the heartbeat of Scrum, where ideas are
transformed into tangible value.

It provides a consistent and short iteration for feedback, allowing
the team to inspect and adapt both their work processes and the items
they’re working on.

Sprints have a fixed length, lasting one month or less.

Shorter Sprints generate more learning cycles and limit risk to a
smaller time frame.

135

Sprint Planning
Sprint Planning is a crucial event in the Scrum framework that

sets the stage for a productive Sprint by establishing the Sprint goal
and the way it will be completed.

Sprint Planning initiates the sprint by defining the work to be
accomplished during that Sprint and ensures that the most important
items from the Product Backlog are discussed and aligned with the
Product Goal.

Daily Scrum
Daily Scrum — also known as Daily Standup — is a short

every-day Developers' meeting to inspect the progress toward the
Sprint goal and adapt the Sprint backlog on necessity.

The aim of the Daily Scrum is to create an actionable plan for the
next day’s work facilitating the decisions and highlighting the
impediments for removal.

Sprint Review
Sprint Review is the Sprint completion event for the Scrum team

to discuss the Increment with Stakeholders and to determine the
future amendments.

Sprint Review is the meeting to showcase which Product Backlog
items have been done and which are still pending.

The Scrum Team collaborates on what to do next, providing
valuable input for subsequent Sprint Planning.

136

Sprint Retrospective
Sprint retrospective is a meeting for the Scrum Team to

estimate how the accomplished Sprint went regarding individuals,
interactions, processes, tools, and their Definition of Done.

Developers share what went well during the Sprint, the
encountered issues, and how those issues were or were not solved.

Scrum Team identifies the improvement areas to implement
enhancements and increase effectiveness during the next Sprint.

137

6.10. Sprint
Sprint — also known as Iteration or Timebox — is the basic

duration unit of development in Scrum.

The Sprint length is a length agreed and fixed in advance for each
Sprint and is normally between one week and one month — with two
weeks being the most common.

Workflow
Each Sprint starts with a Sprint Planning event that establishes a

Sprint goal and the required Product Backlog items.

The team accepts what they agree is ready and translates this
into a Sprint Backlog, with a breakdown of the work required and an
estimated forecast for the Sprint goal.

Each Sprint ends with a Sprint Review and Sprint Retrospective,
that reviews progress to show to stakeholders and identify lessons and
improvements for the next Sprints.

Emphasis
Scrum emphasizes valuable, useful output at the end of the

Sprint that is really done — the software that was fully integrated,
tested, documented, and is potentially releasable.

Sprint Planning
At the beginning of a Sprint, the Scrum Team holds a Sprint

Planning event to:

●​ Mutually discuss and agree on the scope of work that is intended
to be done during the Sprint

138

●​ Select Product Backlog items that can be completed in one Sprint

●​ Prepare a Sprint Backlog that includes the work needed to
complete the selected Product Backlog items

●​ Agree the Sprint goal and a short description they are forecasting
to deliver at the end of the Sprint

As the detailed work is elaborated, some Product Backlog items
may be split or put back into the product backlog if the team no longer
believes they can complete the required work in a single Sprint.

The maximum duration of a Sprint Planning should not exceed 8
hours for a 4 week Sprint.

139

6.11. Daily Scrum
The Daily Scrum is a daily, time-boxed event where the

Development Team synchronizes activities, inspects progress toward
the Sprint Goal, and adapts the plan for the next 24 hours.

In simple words, it's a daily team huddle to get on the same page,
not a detailed status report for a manager.

The main guidelines for the Daily Scrum are as follows:

●​ All developers should come prepared
●​ Anyone is welcome, but only developers may contribute
●​ Only Team decides how to conduct their Daily Scrum

Key Characteristics
The Daily Scrum:

●​ Should happen at the same time and place every day
●​ Is limited — timeboxed — to fifteen minutes

No detailed discussions should happen during the Daily Scrum.

During the meeting, each team member typically answers three
questions to drive the inspection and synchronization:

●​ What did I complete yesterday for the Team to achieve the Sprint
goal?

●​ What do I plan to complete today for the Team to achieve the
Sprint goal?

●​ Do I see any impediment on the way for the Team to achieve the
Sprint goal?

140

Key Objective
The primary goal of the Daily Scrum is to ensure the entire team

has a clear, shared understanding of the work and can quickly identify
any issues that might prevent them from achieving their Sprint Goal.

This creates focus, promotes self-organization, and minimizes the
need for other meetings.

After Party
Once the meeting ends, individual members can get together to

discuss issues in detail.

Such a meeting is sometimes known as a Breakout Session or an
After Party.

141

6.12. Sprint Review
At the end of a Sprint, the Team holds two events:

●​ Sprint Review
●​ Sprint Retrospective

Sprint Review is an event to inspect the outcome of the Sprint
and determine future adaptations.

The Scrum Team presents the results of their work to key
Stakeholders and progress toward the Product Goal is discussed.

Key Characteristics
During a Sprint review the team:

●​ Reviews the work that was completed and the planned work that
was not completed

●​ Presents the completed work — Demo — to the Stakeholders
and collaborates with the Stakeholders on what to work on next

Sprint Review is a working session and the Scrum Team should
avoid limiting it to a presentation.

Guidelines
The guidelines for Sprint Reviews are:

●​ Incomplete work cannot be demonstrated
●​ Recommended duration is two hours for a two-week Sprint

142

6.13. Sprint Retrospective
Sprint Retrospective is a meeting to plan ways to increase

quality and effectiveness.

The Scrum Team inspects how the last Sprint went with regards
to individuals, interactions, processes, tools, and their Definition of
Done.

At the Sprint Retrospective, the Team:

●​ Reflects on the past Sprint
●​ Identifies and agrees on continuous process improvement

actions

Guidelines
Guidelines for Sprint retrospectives:

●​ Recommended duration is one-and-a-half hours for a two-week
Sprint

●​ Scrum Master is to facilitate the event

Key Features
Three main questions should be answered during the Sprint

Retrospective:

●​ What went well during the Sprint?
●​ What went wrong during the Sprint?
●​ What to improve in the next Sprint?

Limits
Sprint Retrospective is the conclusion of the Sprint.

143

Thus, its usual maximum is three hours for a month-long Sprint.

The shorter a Sprint, the lesser a timebox.

144

6.14. Backlog Refinement
Backlog Refinement — also called Grooming — is the ongoing

process of reviewing Product Backlog items and checking they are
appropriately prepared and ordered in a way that makes them clear
and executable for teams once they enter Sprints via the Sprint
Planning activity.

During the Grooming:

●​ Product Backlog items may be broken into multiple smaller ones
●​ Acceptance criteria may be clarified
●​ Dependencies may be identified and investigated

Although not originally a core Scrum practice, Backlog
Refinement has been added to the Scrum Guide and adopted as a way
of managing the quality of Product Backlog items entering a Sprint,
with a recommended investment of up to 10% of a Team's Sprint
capacity.

Technical Debt
Technical Debt — also known as Code Debt — is the implied

cost of future rework caused by choosing quick, easy solutions now
instead of better approaches that would take longer.

Technical Debt may also be discussed during the Backlog
Refinement.

Cancelling a Sprint
The Product Owner can cancel a Sprint if necessary.

The Product Owner may do so with input from the Team, Scrum
Master or management.

145

For instance, management may wish the Product Owner to cancel
a Sprint if external circumstances negate the value of the Sprint goal.

If a Sprint is abnormally terminated, the next step is to conduct a
new Sprint Planning where the reason for the termination is reviewed.

146

6.15. Scrum Workflow
Scrum is an agile framework designed to deliver high-quality

software iteratively and incrementally.

Its structured yet adaptive workflow emphasizes:

●​ Flexibility
●​ Collaboration
●​ Continuous improvement

and may be represented using the following scheme.

Key Stages of the Scrum Process

1. Product Backlog Creation and Refinement

●​ The Product Owner maintains a prioritized list of features,
enhancements, and fixes called the Product Backlog

●​ Items — user stories, bugs, tasks — are refined with estimates
and acceptance criteria

2. Sprint Planning

●​ The Team selects a set of backlog items for the upcoming Sprint
●​ Defines the Sprint Goal and creates a Sprint Backlog

3. Daily Scrum

A 15-minute daily meeting for the team to:

●​ Synchronize team members' work activities
●​ Ensure transparency and quick issue resolution

147

148

4. Sprint Execution

●​ The Development Team builds, tests, and integrates features in
short cycles

●​ Work is tracked via a Sprint Board with its To Do, In Progress, and
Done

5. Sprint Review

●​ At the end of the Sprint, the team demonstrates the working
product increment to stakeholders

●​ Feedback is collected to adjust priorities in the Product Backlog

6. Sprint Retrospective

●​ The team reflects on what went well, what didn’t, and how to
improve in the next Sprint

●​ Focuses on process improvements — tools, communication, etc

Core Scrum Artifacts

The core Scrum Artifacts are:

●​ Product Backlog — Dynamic wishlist of all desired features.
●​ Sprint Backlog — Subset of backlog items committed to in a

Sprint.
●​ Increment — Shippable product version after each Sprint.

149

VII. Software Testing Life

Cycle

150

7. Software Testing Life Cycle
Software Testing Life Cycle — STLC — is a sequence of

verification and validation activities conducted during SDLC to ensure
software quality goals are met.

151

STLC Stages
Software testing life cycle consists of the following

methodological stages to certify a software product:

1.​ Test Conception
2.​ Test Planning
3.​ Test Design
4.​ Test Development
5.​ Test Execution
6.​ Test Closure
7.​ Test Maintenance

Each of these stages has a definite entry and exit criteria,
activities, and deliverables associated with it.

152

7.1. Test Conception Stage
Test Conception is the stage to identify the scope of testing and

estimate if the software requirements — functional and operational —
are testable.

The Test Conception stage is also to assess the possibility of test
automation.

Key Activities
The Test Conception activities are usually aimed to:

●​ Identify types of tests to be created
●​ Gather details about testing priorities
●​ Prepare Requirements Traceability Matrix — RTM
●​ Identify the supposed test environment
●​ Analyze automation feasibilities

Key Deliverables
The primary deliverables of the Test Conception stage commonly

include:

●​ Requirements Traceability Matrix — RTM
●​ Automation Feasibility Report — AFR

153

7.2. Test Planning Stage
Test Planning is the stage to identify the activities and resources

necessary to meet the testing goals.

Test Planning is commonly performed according to the Software
Requirement Specification, Test Strategy, and Risk Analysis.

Test Planning is also the stage to identify testing metrics and
ways to track them.

Test Plan
Test Plan is a formal document that describes the scope,

approach, resources, and schedule of intended testing activities.

It serves as a blueprint for the testing process, identifying what
will be tested, how it will be tested, who will do the testing, and when
it will be tested.

The main components of the Test Plan are:

●​ Testing objectives
●​ Testing scope
●​ Testing risks
●​ Test coverage
●​ Required resources
●​ Team roles
●​ Testing tools
●​ Testing schedule
●​ Test deliverables

— and other values.

Key Deliverables
The main deliverables of the Test Planning stage are:

154

●​ Test Plan
●​ Testing Schedule

​ — where the Testing Schedule is a detailed timeline that
specifies when each testing activity will occur, how long it will take,
what resources are needed, and the sequence of testing tasks.

155

7.3. Test Design Stage
Test Design is the stage for the Checklists and Test Cases to be

created, reviewed, and updated according to the Test Plan.

The Test Design stage may and should actually start earlier than
the very process of software development.

This stage ensures systematic and efficient testing by defining
what to test, how to test, and what data to use.

Key Activities
The Test Design stage is designated to create:

●​ Checklists based on Exploratory testing
●​ Test Cases based on extended Checklists
●​ Test Scripts aimed to automate Test Cases
●​ Test Data necessary for the Artifacts above

Key Deliverables
The main deliverables of the Test Design stage are:

●​ Checklists
●​ Test Cases
●​ Test Scripts
●​ Test Data

156

7.4. Test Development Stage
Test Development is the stage where the testing team designs,

creates, and prepares all necessary artifacts needed to execute tests.

These artifacts — Test Cases, Test Scripts, Test Data — are
followed through during the Test Execution stage to ensure that the
software behaves as expected.

Key Objectives
The primary objectives of the Test Development stage are:

●​ Define test coverage — ensure all requirements are tested
●​ Create reusable test cases — for current and regression testing
●​ Prepare test data — inputs, databases, APIs
●​ Automate test scripts — where automation is applicable
●​ Ensure traceability — link test cases to requirements

The stage bridges Test Design and Test Execution stages
ensuring structured, repeatable, and efficient validation of software.

By investing in well-designed Test Cases, Test Data, and Test
automation teams can:

●​ Reduce defects in production
●​ Accelerate regression testing
●​ Improve audit compliance

Key Activities
During this stage, the testing team focuses on the following core

activities:

●​ Test Case Design — Creating detailed, step-by-step procedures
to validate specific requirements

157

●​ Test Data Preparation — Generating and managing the data
needed to execute the test cases

●​ Test Script Development — Writing automated scripts for
regression or performance testing

●​ Test Environment Setup — Preparing and configuring the
hardware/software environment where tests will run​

Key Deliverables
 The main deliverables of the Test Development stage are:

●​ Test Cases — Step-by-step validation procedures
●​ Test Data — Inputs, databases, and environment setups
●​ Automation Scripts — Code for automated test execution
●​ Traceability Matrix — Ensures all requirements are tested
●​ Test Suite Summary — Overview of the test coverage

Requirements Traceability Matrix

158

7.5. Test Execution Stage
Test Execution is the stage where the QA team runs the

developed Test Cases and Test Scripts on the actual software builds
according to the Test Plan.

Key Activities
Test Execution is the "hands-on" stage where the software is

actively validated against its requirements and commonly includes:

●​ Environment deployment and setup
●​ Test cases and test scripts execution
●​ Test cases and test scripts adjustment
●​ Defect reporting
●​ Defect retesting

When bugs are fixed, the developer team renders a new build for
the Quality Assurance team to retest software.

Key Deliverables
The main Test execution deliverables are:

●​ Requirements Traceability Matrix mapped with:

○​ Bugs
○​ Test cases
○​ Test scripts

●​ Test Cases adjusted to the current application state
●​ Test Scripts updated to the current application version
●​ Defect Reports

159

7.6. Test Closure Stage
Test Closure is the stage when test execution activities of the

current development cycle are formally concluded.

Key Objectives
The main purpose of the Test Closure is to evaluate and assess

the overall effectiveness and efficiency of the Test Execution stage.

Test Closure allows also to document the executed tests
outcomes gathering them in Test Results Report — TRR — and to store
the Test Artifacts keeping them for future reference.

Test Results Report
Test Results Report — or Test Completion Report — is the

main document of the Test Closure stage which provides insights into
discovered and resolved issues.

Test Results Report

160

Test Results Report commonly includes:

●​ Consolidated Test Results
●​ Detailed Error Analysis
●​ Metrics Presentation

Test Results Report signals the completion of testing activities
and informs Stakeholders about the cutoff of the Testing stage.

Key Deliverables
Test Closure deliverables commonly include:

●​ Test Status Report
●​ Test Results report
●​ Test metrics

In summary, Test Closure ensures that testing objectives are met,
errors are documented, and the Testing stage successfully concludes.

161

7.7. Test Maintenance
Test Maintenance is the ongoing stage where test assets —

cases, scripts, data, and environments — are updated, optimized, and
retired to keep pace with evolving software.

Unlike one-time test execution, Test Maintenance ensures
long-term relevance, efficiency, and accuracy of testing processes as
the application changes.

Key Objectives
The main goals of the Test Maintenance stage include:

●​ Keeping tests healthy — Test maintenance ensures that both
manual test cases and automated test scripts remain relevant
and effective as the application evolves.

●​ Automation framework continuity — Automation framework
dependencies are to be aligned with the changes to the tools or
third-party libraries.

●​ Regression testing — Helps ensure that the code changes do not
break existing functionality, and automated regression testing
suite typically contains a big number of tests, which require
ongoing maintenance to validate the application properly.

●​ Continuous Integration — Automated tests run through
Continuous Integration pipelines to identify and resolve issues
quickly; ensuring that tests are always up to date is crucial in this
context, as builds won't complete if tests fail.

●​ Reporting — Regular reporting helps Quality Assurance
Engineers identify broken tests that need updating.

162

Key Activities
●​ Test Artifact Review and Updates:

○​ Test Cases — Add or remove steps based on feature
changes and re-prioritize test cases

○​ Test Data — Refresh datasets to match production changes
and anonymize sensitive data for compliance

●​ Automated Test Script Maintenance:

○​ Fix broken locators after UI redesigns
○​ Refactor scripts
○​ Update libraries, frameworks, and other dependencies

●​ Test Suite Optimization:

○​ Remove redundancy — Merge duplicate tests
○​ Improve coverage — Add tests for untested scenarios
○​ Tag tests — smoke, regression, sanity — for better

execution control

●​ Traceability Matrix Updates

○​ Ensure test cases map to current requirements
○​ Highlight gaps where new tests are needed

Key Deliverables
The main deliverables of the Test Maintenance stage are:

●​ Updated Test Cases — Aligned with new software functionality
●​ Refactored Test Scripts — Improved in stability and performance
●​ Test audit report — Reflecting the added or removed tests
●​ Flaky test log — Documentation of unstable tests and fixes

163

VIII. Test Documentation

164

8. Test Documentation
Test Documentation is a set of test documents used for the

purpose of Software quality assurance.

Test Documentation Scopes
​ The Test Documentation scopes may be represented the
following way.

165

Documentation Categories
Test Documentation may be split into three main categories:

●​ Test Execution documentation
●​ Test Automation scripts and data
●​ Test Conception documentation

Test Execution Documentation
The main Test execution documents are:

●​ Checklist
●​ Test Case — or Test Scenario
●​ Test Suite

Test case being the most important document for the SQA.

Test Automation Documents
The main test automation documents include:

●​ Test Script
●​ Test Data

In automation, often, test data is being created automatically.

Though Test data is used in manual testing either, in automation
it plays a special role and meaning.

Test Policy Documentation
The main Test conception documentation include:

●​ Test Plan
●​ Test Strategy
●​ Test Policy

166

Test Plan and Test Strategy may either be separate documents or
a single one; the choice depends on the documentation developer and
the software scope.

If a project is bigger in size, it makes sense to have different
documents — else, these documents may be united in one.

167

8.1. Checklist
Checklist is a flat list of verifications to undertake during the

Testing stage.

It helps to split the software functionality into separate testing
blocks and allows to understand the scope of testing and how many
checks failed.

In Checklist, the test order may be random because it does not
matter.

Checklists are common for initial stages of the project when Test
Cases are only planned for the future development.

Benefits
The main advantages of Checklists are as follows:

●​ Flexibility — Checklists can be used in all testing types
●​ Simplicity — Checklists are easy to create and maintain

168

●​ Quickness — Checklists are fast to develop and understand
●​ Brevity — Checklists have only a couple of fields to fill out
●​ Results analyzability — Checklists are easy to follow and examine
●​ Team integration — Checklists simplify QA members onboarding
●​ Deadlines control — Checklists let control test accomplishment

Drawbacks
The main disadvantages of using Checklists in testing are:

●​ Different Interpretation — QA Engineers can accomplish
identical tasks using different approaches

●​ Coverage Gaps — It is difficult to capture all functional or
structural components, especially those of higher levels

●​ Item Overlap — Trying to cover a big scope of material may lead
to duplicated tasks and, as a consequence, to excessive testing

●​ Reporting Problems — Checklists can hardly describe complex
system components, functions, and their interaction

169

8.2. Test Case or Test Scenario
Test Case — often called a Test Scenario — is a sequence of

steps dedicated to verify the expected software behavior.

The cardinal difference between a Checklist and a Test Case is
the Expected Result field obvious for the Test Cases.

Test Case is the main testing document and is often synonymous
for the very term Test.

Test Case Types
There are two types of Test cases:

●​ Informal
●​ Formal

Informal Test Case is the Test Case used for the software which
doesn't have formal requirements being based on the accepted normal
operation of the software of a similar class.

170

Formal Test Case is the Test Case characterized by a known input
and expected output, which is figured out before the test is executed.

Mandatory Fields
Formal Test Case format may include various parameters but the

mandatory fields are as follows:

●​ ID
●​ Description
●​ Steps
●​ Expected result
●​ Status
●​ Priority

The shortest Test case format may omit the Priority field.

Requirement Traceability Matrix
In order to fully verify that all requirements for the software are

met, there must be at least two Test Cases for each requirement:

●​ Positive
●​ Negative

If a requirement has sub-requirements, each sub-requirement
must have at least two Test Cases either.

Keeping track of the link between the requirement and the test is
frequently done using a Requirement Traceability Matrix.

Formal Test Case Structure
Written Test Cases should include a description of the

functionality to be tested, and the preparation required to ensure that
the test can be conducted.

171

Typical written Test Case format may include:

●​ ID — Unique identifier of the Test Case
●​ Author — Test Case's developer name
●​ Test Category — The group a Test Case belongs to
●​ Description — or Summary — The objective of the Test Case
●​ Pre-conditions — or Pre-requisites — The conditions to be met

before the test steps execution
●​ Test Data — The variables and their values in the Test Case
●​ Steps — Actions to be performed during the Test Case execution
●​ Expected Result — The expected outcome of the executed Step
●​ Post-conditions — The result of the Step execution
●​ Actual Result — The result retrieved after the Step execution
●​ Status — The Pass-or-Fail outcome of the Expected and Actual

Results comparison
●​ Priority — The Test Case's importance for Regression Testing
●​ Automation — A mark whether the Test Case is to be automated
●​ Automated — A mark whether the Test Case is automated
●​ Remarks — A set of notes related to the test Step

The majority of the fields above are optional and may be omitted
in the Test Case format.

Test Scenario
Test Scenario is a step by step end-user activity documented for

a certain functionality to be tested.

While the Test Case is better suited for Unit Testing, the Test
Scenario better fits for the End-To-End — E2E — Functional Testing.

Test Cases are usually brief verifications while Test Scenarios
cover a significant number of steps to validate an expected result and
are better suited for automation.

172

The purpose of the Test Scenario is to follow the end-to-end
consequence of steps to test a specific complex issue or troublesome
use case.

173

8.3. Test Script and Test Data
Test Script is a program designated to automate Test Case steps

and verifications.

Each Test Script is typically associated with a Test Case.

After the Test Script is implemented, it usually replaces the Test
Case associated with it during the Software testing life cycle.

Test Script is commonly created to test a part of the software
system functionality.

174

Test Scripts can be created using general purpose programming
languages, special test-script programming languages, or Graphic User
Interface test-recording tools.

Test Scripts are crucial while mocking a situation inimitable for a
human being, for instance, as a part of Load Testing.

Test Script Components
The main Test Script components are as follows:

●​ Test Steps — The detailed instructions for each test action
●​ Expected Results — The behavior expected from the software
●​ Test Data — The input values needed for the test
●​ Assertions — The conditions to comply during the script run

Test Script Development
The Test Script development process usually includes:

●​ Test Case analysis — Understanding of software requirements
●​ Test Case design — The detailed Test Case creation
●​ Test Script coding — The Test Case into Test Script translation
●​ Test Data preparation — The relevant data generation
●​ Test Script execution — Running the Test Script
●​ Test Script storage — Keeping the test code in repository

Benefits
Automated testing is advantageous for a number of reasons:

●​ Test Scripts may run continuously
●​ Test Scripts do not need a human
●​ Test Scripts are easily repeatable
●​ Test Scripts are much faster

175

Drawbacks
Test Script, as a software to test a software:

●​ May contain their own flaws
●​ Require higher level of expertise
●​ Can only examine what they are programmed to examine

Test Data
Test Data is the data specifically designated to be used in tests.

Test Data may be produced by the tester, or by a program that
aids the tester.

176

Test Data may be recorded for re-use, or used once and then
forgotten.

Test Data may be split into two following types:

●​ Synthetic Data — also called Fake Data
●​ Representative Data — also called Real Data

Synthetic Test Data are either manually created or created by
data generation tools.

Representative Test Data are usually taken from the production
environment and then anonymized.

177

8.4. Test Suite
Test Suite is a collection of Test Scenarios, Test Cases, or Test

Scripts to be executed in a specific test run.

Test Suite often contains detailed instructions or goals for each
collection of test items and information on the system configuration to
be used during testing.

It may also contain pre-requisite states or steps, and descriptions
of the following tests.

Key Objectives
Test Suite is a container that has a set of tests which helps testers

in executing and reporting the test execution status.

In a Test Suite, the Test Cases or Test Scripts are organized in a
logical order — for example, the Test Case for registration will precede
the Test Case for login.

178

Test Suite can take one of the following states:

●​ Active
●​ In progress
●​ Completed

Test Suite Types
Test Suites are used to group similar Test Cases together.

Test Suites are often grouped for the following types:

●​ Smoke test suite — Test Cases collection that performs a basic
validation for the majority of the product's functional areas and is
executed after each product build, before the build is promoted
for use by a larger audience

●​ Sanity test suite — Test Cases collection that ensures basic
software functionality and serves as the first validation level
performed after changes are made to the product

●​ Critical Path test suite — Test Cases collection that crosses the
software boundaries and ensures that the integration points
between products are exercised and validated

●​ Functional Verification test suite — Test Cases collection that
focuses on a specific software function and ensures that several
aspects of a specific feature are tested

●​ Regression test suite — Test Cases collection used to perform a
regression analysis of the functional software areas, often added
into multiple Test Suites and Test Plans

179

8.5. Test Plan
Test Plan is a product-level document that describes the test

objectives, schedule, estimation, deliverables, and resources required
for the software testing.

Key Objectives
Test Plan serves a template to conduct software testing activities

as a defined process monitored and controlled by the Test manager.

Test Plan must be consistent with the company's Test Policy and
Test Strategy documents.

Key Components
Test Plan should usually include:

●​ Test Plan identifier
●​ References
●​ Introduction
●​ Test items
●​ Software risk issues
●​ Features to be tested
●​ Features not to be tested
●​ Testing approach
●​ Test Pass/Fail criteria
●​ Suspension criteria and Resumption requirements
●​ Test deliverables
●​ Test environment setup
●​ Staffing and training needs
●​ Team member responsibilities
●​ Testing schedule
●​ Risks and contingencies planning
●​ Approvals

180

●​ Glossary

— and other chapters.

Test Plan components mentioned above are not mandatory and
may be omitted on necessity.

Often, companies create their own formats which are roughly
based on any standard.

Benefits
Test Plan document has multiple advantages as it:

●​ Helps people outside the QA team — developers, business
managers, customers — understand the details of testing

●​ Guides QA team's thinking towards test procedures to be
completed

●​ Documents key aspects — test estimation, test scope, test
strategy — for future review and reuse in other projects.

181

8.6. Test Strategy
A Test Strategy is a high-level, organization-wide document that

outlines the approach, objectives, and execution plan to test a product.

It serves as a blueprint to ensure testing aligns with business
goals, technical requirements, and quality standards.

Key Objectives
The purpose of the Test Strategy is to:

●​ Define the scope, focus, and methodologies of testing
●​ Align testing efforts with project timelines and business goals
●​ Ensure consistency across teams
●​ Optimize resource allocation — tools, budget, personnel
●​ Mitigate risks through structured planning

Key Components
The main chapters of the Test strategy are as follows:

●​ Scope and Objectives — What will be tested and why
●​ Testing Types — Functional, non-functional, regression, etc
●​ Test Levels — Unit, integration, system, UAT, etc
●​ Test Environment — Hardware, software, and tools required
●​ Test Data Management — How test data will be created, stored,

and anonymized
●​ Roles and Responsibilities — Who designs, executes, and

approves tests
●​ Risk Analysis — Identify high-risk areas and mitigation plans
●​ Entry and Exit Criteria — Conditions to start and stop testing
●​ Automation Approach — Tools, coverage, and CI/CD integration
●​ Defect Management — How bugs are logged, prioritized, and

retested

182

●​ Metrics and Reporting — Key performance indicators, KPIs, and
reporting frequency

●​ Deliverables — Test Plans, Test Cases, Test Result Reports, and
Audit Logs

Test Strategy Role
A well-defined Test Strategy ensures testing is structured,

efficient, and goal-driven.

It bridges the gap between business objectives and technical
execution, reducing costs while maximizing quality.

183

8.7. Test Policy
Test Policy is the company-level document which defines the

test principles adopted by an organization.

Test policy is determined by the company's Chief Executive
Officers — CEOs — which provide an organizational insight for the test
activities.

Key Objectives
The Test Policy commonly describes:

●​ The place of testing in the company
●​ Test objectives of the organization
●​ Testing process definition
●​ Test effectiveness measurement
●​ Test processes improvement approach

184

8.8. Test Management Systems
Test Management System — TMS — is an application

designated to help teams manage their software testing processes
effectively.

TMS can cover all test documentation levels and provide a
centralized location for storing and managing Test Cases, Scenarios,
Requirements, and Defects.

Key Objectives
Test Management Systems play a crucial role in ensuring

software quality by automating the following processes:

●​ Requirements Traceability
●​ Project Tasks Tracking
●​ Test Case Management
●​ Automated Scripts Execution
●​ Defect Tracking
●​ Reporting and Metrics Provision

Benefits
The main advantages of Test Management Systems are as

follows:

●​ Testing process consolidation
●​ Efficient data access and analysis
●​ Effective communication across teams

185

IX. Software Quality

Defects

186

9. Software Quality Defects
Software Quality Defect — also called Bug or Fault — is a flaw,

error, or imperfection in a software product that causes it to behave in
unintended ways or fail to meet specified requirements.

Defects represent deviations between actual and expected
requirements, specifications, or user expectations, resulting in either
functional flaws — crashes, wrong outputs, etc — or non-functional
shortcomings — slow performance, security vulnerabilities, and so on.

Key Characteristics
Defects may be classified using the following key characteristics:

1.​ Root Causes:

●​ Coding errors
●​ Flawed design or architecture
●​ Misunderstood requirements
●​ Environmental incompatibilities

2.​ Impact Levels:

●​ Critical — System crashes, data loss
●​ Major — Core features malfunction
●​ Minor— Cosmetic issues

3.​ Detection Methods:

●​ Testing
●​ Code reviews
●​ User feedback

187

Defect Management Role
Defect management plays a crucial role for the following main

reasons:

●​ Cost — fixing defects post-release is many times costlier than
during development

●​ Reputation — usually, one in four users abandon the software
after the app crashes

●​ Compliance — defects in healthcare or fintech software can
violate regulations and bring to penalties

Best Practices
1.​ The best practices to reduce software defects should include:

●​ Shift-Left Testing — catching bugs in advance introducing unit
or integration tests as early as possible

●​ Static Analysis — dedicated tools implementation for the code
quality checks

●​ Peer Reviews — 60–90% of defects avoidance via the regular
code reviews

●​ Automated Regression Testing — preventing the reintroduction
of old bugs by automating the test cases for known issues

188

9.1. Defect Classification
The software quality defects are commonly classified using the

following criteria.

Defect Classification By Severity
Considering the impact on a system, software defects may be

treated as:

●​ Critical — Causes system crash, data loss, or complete failure:

○​ Database corruption
○​ Application crash on startup etc

●​ High — Major functionality broken but system remains operable:

○​ Login failure
○​ Payment processing error and so on

●​ Medium — Partial functionality loss with workarounds available:

○​ Search returns incomplete results
○​ UI formatting issues and others

●​ Low — Cosmetic issues with no functional impact:

○​ Spelling errors
○​ Minor alignment problems and alike

Defect Classification By Priority
By urgency of fix, software defects may be divided into the

following groups:

●​ Immediate — Must be fixed immediately, blocking further work
and should be fixed the next build

189

●​ High — Important to fix soon, affects key functionality and
should be fixed in current release

●​ Medium — Has workarounds and should be fixed the next
release

●​ Low — Minor issues which may be fixed when convenient, as a
rule in a future release

Defect Classification By Origin
Considering the source of a defect, they may be split into the

following categories:

●​ Requirements Defects — Incorrect or missing requirements:

○​ Unclear business rules
○​ Conflicting requirements etc

●​ Design Defects — Architecture or design flaws:

○​ Poor database design
○​ Insecure architecture etc

●​ Coding Defects — Implementation errors:

○​ Syntax errors
○​ Logic errors
○​ Boundary condition issues etc

●​ Testing Defects — Errors in test cases or environment:

○​ Incorrect test data
○​ Environment configuration issues etc

●​ Integration Defects — Component interaction issues:

○​ API compatibility problems
○​ Data format mismatches and others

190

9.2. Defect Life Cycle
The Defect Life Cycle may be represented with the following

scheme.

191

Detailed State Transitions
Understanding software defects and their life cycle is

fundamental to effective quality assurance.

A well-managed defect process includes as a rule following
Detailed State Transitions:

●​ New — Defect is identified and logged for the first time
●​ Assigned — Defect is assigned to developer
●​ Duplicate — Defect already reported by someone else
●​ Rejected — Defect is invalid or not a bug
●​ Open — Developer accepts and starts working on the defect
●​ Fixed — Developer has implemented the fix
●​ Retest — Tester verifies the fix
●​ Reopened — Fix is incomplete or defect reappears
●​ Verified — Fix is confirmed to be working correctly
●​ Closed — Defect is formally closed in the system

192

9.3. Defect Report
Defect Report — also called Bug Report — is a formal

document that describes a software flaw or failure that causes it
to behave unexpectedly or produce incorrect results.

It serves as the primary communication tool between
testers, developers, and stakeholders to track and resolve
software issues.

Key Components
The essential Bug Report components are as follows:

●​ Defect ID — Unique identifier
●​ Summary — Brief, descriptive title
●​ Reported By — Who found the defect
●​ Report Date — When defect was found
●​ Component — Affected module of application
●​ Severity — Impact on system functionality
●​ Steps to Reproduce — Exact sequence to recreate defect
●​ Expected Result — What should happen according to SRS
●​ Actual Result — What actually happens
●​ Environment — Where defect was found
●​ Evidence — Screenshots, records, logs, database snapshots

Key Characteristics
Effective Defect Reports are:

●​ Clear — Easy to understand without ambiguity
●​ Concise — No unnecessary information
●​ Complete — Contains all needed information
●​ Consistent — Follows organizational standards
●​ Reproducible — Others can recreate the issue

193

Writing effective Defect Reports requires:

●​ Using objective language — "Clicking 'Submit' button displays
error message: 'Database connection failed'", not "The system is
broken when you try to save data"

●​ Being specific and detailed — "Dropdown shows 5 items instead of
expected 7: missing 'Admin' and 'Manager' roles", not "Dropdown
options are wrong"

●​ Placing one defect per report — Defect A: "Login button not
working", Defect B: "Password field allows invalid characters", not
"Login and password fields have issues"

●​ Including visual evidence:

○​ Using arrows or circles to highlight issues in screenshots
○​ Recording videos for complex multi-step defects
○​ Capturing relevant log entries with timestamps

A well-written Defect Report is more than just a bug description
— it's a critical communication tool that drives quality improvement.

Key Objectives
Effective defect reporting:

●​ Accelerates problem resolution through clear communication
●​ Provides data for quality metrics and process improvement
●​ Ensures accountability through proper tracking
●​ Supports informed release decisions

The quality of Defect Reports directly impacts the efficiency of
the development process and the quality of the final product.

Investing time in writing clear, complete, and professional Defect
Reports pays significant dividends throughout the SDLC.

194

X. Software Testing

Classification

195

10. Software Testing
Classification

Software Testing Classification is a systematic categorization of
the software testing categories according to their purpose criteria.

The perception of classification allows making informed decisions
and contributing to delivering reliable software products.

Key Objectives
The goals of the Software Testing Classification include:

●​ Comprehensive Segmentation
●​ Testing Strategy Tailoring
●​ Efficient Resource Allocation
●​ Forcible Risk Mitigation
●​ Responsive Quality Assurance

The choice of the testing type depends on such factors like:

●​ System scope
●​ SDLC stage
●​ Project budget
●​ Software significance

196

10.1. Software Conception Stage
Categories

Software Conception is the stage to define the very approach
for the documentation strategy of the upcoming development, testing,
and related processes.

There are two major testing types crucial for the Software
Conception stage:

●​ Casual testing
●​ Formal testing

The dashed line illustrates the transition from Casual to Formal
Testing, because Formal Testing provides the reliability, repeatability,
and accountability that Casual Testing inherently lacks.

Casual Testing
Casual testing is a type of Software testing performed without

any dedicated planning, documentation, and procedures.

There are three major types of Casual testing:

●​ Ad hoc testing
●​ Intuitional testing
●​ Exploratory testing

197

Ad Hoc Testing

Ad Hoc Testing — from latin "To this purpose" — is the least
formal type of Casual testing, also called Random Testing.

Ad Hoc tests are only run once, unless a bug is discovered, and
since the very testing is not documented, the found defects are
difficult to reproduce.

The strength of Ad Hoc Testing is in its applicability during the
earliest stages of development life cycle so the evident bugs are found
quickly.

Intuitional Testing

Intuitional Testing — often called Error Guessing — is a type of
Casual Testing based on prior testing experience and expertise.

Error Guessing has no explicit testing rules and depends on the
situation entirely.

It is solely determined by the past experience and intuition of a
Quality Assurance Engineer who may possibly know the problem areas
which commonly invoke the software failures.

198

Exploratory Testing

Exploratory Testing is a type of Casual Testing performed as a
process of simultaneous learning, test design, and test execution.

Cem Kaner, who coined the term in 1984, defines exploratory
testing the following way:

"Exploratory testing is a style of software testing that emphasizes
the personal freedom and responsibility of the individual tester to
continually optimize the quality of his/her work by treating test-related
learning, test design, test execution, and test result interpretation as
mutually supportive activities that run in parallel throughout the project."

While the software is being tested, the tester learns things that
together with experience and creativity generates new tests to run.

Checklist is the only artifact used to structurize the Exploratory
Testing in order not to waste time repeating the same tests.

Formal Testing
Formal Testing is a type of software testing performed with

proper planning, documentation, and procedures.

It is carried out with meticulous Test Cases documentation and
systematically adheres to the Software testing life cycle.

Formal Testing is more expensive due to the outlays for the test
case preparation, personnel training, and documentation authoring.

Origins

Formal Testing has three primary documentation origins:

●​ User Stories
●​ Business Scenarios
●​ Software Requirements Specification

199

User Stories

User Stories are concise statements used in software
development which communicate a single feature, task, or goal from
the User's perspective.

A typical User Story format is: "As a Type of User, I want Some
Goal so that Some Reason", for instance:

"As an online shopper, I want to be able to filter products by
category so that I can easily find the items I'm interested in."

Business Scenarios

Business Scenarios are loosely defined descriptions of specific
situations explaining the User's view on achieving a goal or completing
a task.

They reveal the Customer's perspective on a software feature
omitting the process of its implementation and can be depicted as a
series of steps.

Business Scenarios provide context and comprehension on how a
particular type of person might interact with a product or service.

Software Requirements Specification

Software Requirements Specification is the documented set of
expectations which encompasses all functional aspects to form a test
execution basis for multiple features, constraints, and capabilities.

It serves as a single source of truth both for the program code
and Test Case development during the next stages of the Software
development life cycle.

Formal Testing Types

Respectively, there are three major types of Formal testing:

200

●​ Story-based testing
●​ Scenario-based testing
●​ Specification-based testing

201

10.2. Software Planning Stage
Categories

Software Planning is the stage to determine the very testing
approach for the following software development life cycle.

There are two major testing types crucial for the Planning stage:

●​ Static Testing
●​ Dynamic Testing

The dashed line indicates a trend of favoring Dynamic Testing
over Static Testing, as the former excels at detecting the wider range
of specific defects, while the latter is only superior for early defect
prevention.

Static Testing
Static Testing is a type of Formal Testing performed without the

software code execution.

For this reason, Static Testing is also called:

●​ Documentation testing
●​ Non-execution testing

202

●​ Verification testing
●​ Testing review

Tested Documents

The most important statically tested documents include:

●​ Requirements Analysis documents:
○​ User Stories
○​ Business Scenarios
○​ Software Requirement Specifications

●​ Software Design Specifications

●​ Test design documentation:
○​ Test Plans
○​ Test Cases

●​ Test development documentation:
○​ Source code
○​ Test Scripts

●​ Release documentation:
○​ User manuals
○​ Helps

Static Testing Purpose

Static Testing, requiring no software run, allows catching crucial
bugs and ambiguities on the earliest stages of the development.

The earlier logic mistakes and requirement contradictions are
found, the lesser the cost of their correction and the straighter the
process of software development.

203

Dynamic Testing
Dynamic Testing is a type of Formal Testing performed with the

software code execution.

It allows validating the software functional behavior, memory,
processes, and overall performance in dynamics.

That's why Dynamic Testing is also called Execution Testing or
Validation Testing.

Dynamic Testing Purpose

Dynamic Testing focuses on evaluating the runtime behavior of
the software code and observing its behavior under various conditions.

It aims to ensure that the software functions correctly during and
after installation, and implies actual output collation with the expected
one.

Dynamic Testing may begin before the software is ready; certain
units or components may be tested dynamically using stubs, drivers, or
debuggers.

204

10.3. Software Design Stage
Categories

Software Design is the stage which allows acquiring the first
operable Prototype or Minimum Viable Product — MVP.

There are two major software testing types during the Design
stage:

●​ Passive Testing
●​ Active Testing

The dashed line represents the trend of transitioning from
Passive to Active Testing driven by the need for speed, reliability, and
continuous feedback in modern software development.

Passive Testing
Passive testing is a type of Dynamic Testing performed through

the code execution with no User interactions with the software.

Passive Testing means verifying the system behavior through the
offline runtime verification, log analysis, and stack trace inspection.

205

Active Testing
Active Testing is a type of Dynamic Testing performed through

the code execution along with User interactions with the software.

Active Testing is dedicated to evaluate the robustness, reliability,
and optimal performance of the software in dynamic environments.

206

10.4. Software Development Stage
Categories

Software Development is the stage which provides both
executable and testable builds of a target software.

There are three testing types performed during the
Development stage:

●​ Black Box Testing
●​ Gray Box Testing
●​ White Box Testing

The dashed line depicts the trend of transitioning from Black Box
Testing to White Box Testing as defect prevention is more efficient and
cost-effective than detection.

207

Black Box Testing
Black Box Testing is a type of Active Testing performed with no

knowledge of software code, internal structure, and implementation
details.

The term symbolizes the inability to see the inner software
implementation so that only testers' experience can be applied.

Black Box Testing requires manual quality assurance skills which
can better imitate the external behavior of terminal users.

There are five Black Box Testing levels, depending on the tested
scope:

●​ Smoke Testing
●​ Sanity Testing
●​ Critical Path Testing
●​ Extended Testing
●​ Exhaustive Testing

Smoke Testing is the minor level of Black Box Testing performed
to reveal evident bugs severe enough to reject a software build
promoted for further verification.

208

Sanity Testing is a type of Black Box Testing performed to
quickly evaluate the software operability against the basic set of
verifications.

Critical Path Testing — also called End-to-End testing — is a
type of Black Box Testing carried out to analyze the functionality most
commonly employed by the majority of software users.

Extended Testing is a type of Black Box Testing performed to
explore all declared functionality specified in the Software
requirement specification.

Exhaustive Testing — or Complete testing — is a type of Black
Box Testing performed to confirm that software functions correctly
under every possible situation.

While Exhaustive Testing is not actually achievable, diligent
testing helps create robust applications with minimal defects.

Gray Box Testing
Gray Box Testing is a type of Active Testing performed with a

partial notion of software code, internal structure, and implementation
details.

The term implies that the approach is a combination of both
Black Box and White Box Testing.

White Box Testing
White Box Testing is a type of Active Testing performed with the

knowledge of software code, internal structure, and implementation
details.

The term refers to the see-through box concept which symbolizes
the ability to see through the software's outer shell into its inner state.

209

White Box Testing requires software or test developers to create
Test Scripts making this type of testing more expensive.

There are five White Box Testing levels, depending on the tested
scope:

●​ Unit Testing
●​ Component Testing
●​ Module Testing
●​ Integration Testing
●​ System Testing

Unit Testing is the minor level of White Box Testing, typically
performed by developers, which spots on testing the individual units,
in isolation.

Component Testing is a type of White Box Testing performed on
a compound feature derived from the independent units coalition, in
isolation.

Module Testing is a type of White Box Testing which focuses on
testing the independent Modules made of grouped Components, in
isolation.

210

Integration Testing is a type of White Box Testing performed on
a set of modules joined in a Sub-system entity to verify the combined
operability.

System Testing is a type of White Box Testing conducted on the
integrated software to evaluate its compliance with the requirements
specified.

211

10.5. Software Testing Stage
Categories

Software Testing is the stage of repetitive software build
validations to fetch it to the state of a Release Candidate.

Release Candidate — RC — is a potentially shippable version of
software that is feature-complete and considered ready for final
testing before official release.

It represents the final stage of the development cycle where the
software is deemed likely to become the production version unless
critical issues are discovered.

There are two types of testing performed during the Software
Testing stage:

●​ Operational Testing
●​ Functional Testing

212

The dashed line reveals the greater importance of Functional
Testing over Operational Testing underscoring that working software is
a prerequisite for evaluating how well it works in terms of speed,
security, or reliability.

Operational Testing
Operational Testing is a type of White Box Testing performed to

validate operational — non-functional — aspects of the software.

Non-functional aspects are those that reflect the quality of the
product, particularly in the context of the suitability perspective of its
users, and are never related to a specific software function:

●​ Performance
●​ Usability
●​ Reliability
●​ Scalability
●​ Security etc

Operational Testing is designed to verify the software readiness
of the non-functional aspects which are never addressed by functional
testing.

It validates the way software operates, as opposed to the
functional behaviour verification.

There are four major types of Operational Testing:

●​ Installation Testing
●​ Usability Testing
●​ Payload Testing
●​ Security Testing

Operational Testing Purposes

Operational Testing refers to the software aspects that may not
be related to a particular function or User action.

213

Operational Testing implies the software requirements testing
that are not functional in nature but important enough for the system
operability.

Operational requirements reflect the software quality as a
whole, in the context of its users suitability perspective, particularly.

Functional Testing
Functional Testing is a type of White Box Testing performed to

validate the software against its functional requirements and
specifications.

Functional Testing Purposes

Functional Testing serves to verify the software actions by
providing an input and estimating the output against the documented
conditions.

 A software function has two distinctive non-operational features
crucial for the Functional Testing:

●​ Evaluability — Expected and actual results' existence
●​ Bilaterality — Positive and negative testing approaches

Evaluability

Software function evaluability refers to the simplicity and
effectiveness with which this function can be assessed, measured, and
judged against specific criteria.

Bilaterality

Bilaterality is a distinctive property of a software function which
is achieved due to its reciprocity for the testing purposes.

214

Bilaterality allows to split Functional Testing into two major
types:

●​ Positive Testing
●​ Negative Testing

Positive Testing

Positive Testing — or Happy Path Testing — is a type of
Functional Testing performed on a software by providing valid, proper,
and correct data as input.

Positive Testing verifies whether the software behaves as
expected with positive and awaited user inputs, or not, to confirm the
software viability.

Positive Testing should precede the Negative one because
defects found through the Positive tests prevent the necessity for
further testing.

Negative Testing

Negative Testing is a type of Functional Testing performed on a
software by providing invalid, corrupt, or improper data as input.

Negative testing verifies whether the software behaves as
expected with negative or unwanted user inputs, or not, to uncover
issues in error handling.

It means, a software might and actually should work correctly
under improper contexts, that is under Negative Testing.

215

10.6. Software Deployment Stage
Categories

Software Deployment is the stage where the Release Candidate
is being tested, approved, and rendered to the Client.

There are two testing types performed during the Deployment
stage:

●​ Feature Testing
●​ Regression Testing

The dashed line reflects the common and critical mindset in the
professional software industry that protecting existing functionality is
a higher priority than validating the new one.

216

Feature Testing
Feature Testing — or New Feature Testing — is a type of

Functional Testing performed to verify the new code or environment
amendments comply with the software requirements.

The goal of new Feature Testing is to ensure that augmented
functions perform as expected, introduce no defects, and maintain
overall software quality.

Regression Testing
Regression Testing is a type of Functional Testing performed to

verify the new code or environment amendments retain the previously
achieved quality.

Regression Testing implies that already developed tests are
re-executed to verify the influence of changes on the functionality that
existed before.

217

10.7. Software Maintenance Stage
Categories

Software Maintenance is the stage to enhance the software test
coverage to assure its higher quality prior to the next SDLC turn.

There are two types of Regression Testing performed during the
Maintenance stage:

●​ Manual Testing
●​ Automated Testing

​ The dashed line from Manual Testing to Automated Testing
emphasizes the greater importance of the last one with core reason

218

that Automated Testing enables speed, scale, and reliability in a way
that Manual Testing cannot, making it the backbone of any team that
needs to release software frequently and reliably.

Manual Testing
Manual Testing is a type of Regression Testing executed

manually.

Manual Testing means all the essential software feature
verifications and test report generation are performed without the
automated testing tools.

Automated Testing
Automated Testing is a type of Regression Testing executed

automatically by running the test scripts with the automated testing
tools applied.

Automated Testing supposes the use of appropriate automation
tools to develop, enhance, and execute the test scripts to validate the
software.

219

10.8 Software Testing
Classification Scheme

Software Testing Classification may finally be depicted by the
following scheme.

According to the scheme, Software Development is the most
time and effort consuming, resource extensive, and responsible stage
considering the goals of the Software testing life cycle.

Testing is crucial for the Software Development stage as it
bridges development and real-world usage, ensuring software is
reliable, secure, and user-ready.

Without it, even perfectly designed systems risk catastrophic
failures.

220

XI. Practice

221

11. Practice
Learning Software quality assurance fundamentals and then

moving to a real-life project is one of the most effective ways to build a
valuable and rewarding career.

Let's break down why — and create a practical path forward.

Why
The software industry has realized that you cannot test quality at

the end — it must be built in throughout the process.

This has created a massive demand for skilled QA professionals
who understand both theory and practice — every app, website, and
digital system needs to be tested.

Whether you stay in QA or move into development, management,
or product design, understanding QA fundamentals makes you more
thorough, user-focused, and valuable — you learn to think about edge
cases, risks, and the user experience in a way that pure developers
often overlook.

QA theory gives you a framework of what to test, why to test it,
and practice shows you the reality of how things actually break, how to
communicate with developers, how to prioritize — and this
combination is powerful!

Finding a critical bug before it reaches users is incredibly
satisfying — you directly prevent frustration, protect company
revenue, and safeguard the user experience.

You transition from passive learning to actively creating value.

222

How
Don't jump into a massive project immediately — follow this

progression to build confidence and skills effectively.

●​ Step 1. Solidify the Fundamentals — ensure you have a grip on
core concepts:

○​ SDLC & STLC
○​ Test Types
○​ Basic Test Documentation
○​ Other Core Notions

●​ Step 2: Practice on a Controlled Real Project — test something
that exists but where the stakes are low:

○​ Choose a popular website or open-source app — anyone
you love most

○​ Create a simple Checklist — try to add the most valuable
checks there, don't chase for the quantity

○​ Write formal Test Cases — don't just click around, write
detailed cases using a dedicated tool

○​ Execute Tests and Log Bugs — find actual flaws, UI glitches,
or usability issues and report them in a bug-tracker

●​ Step 3: Join a Real-Life Project:

○​ Open Source Software
○​ Volunteer Projects
○​ Internships or Junior QA Roles

This gives you a portfolio piece and practical experience with the
workflow.

The Goal is — You're ready for a team environment.

223

When
This disordered reality is where the real learning happens.

Your theoretical knowledge is the map — practicing on a real
project is the journey where you learn to navigate the actual terrain.

You will get stuck, you will be confused, but you will learn
exponentially faster than through theory alone.

You need to develop soft skills like communication, persuasion,
and patience that are just as important as your technical testing skills.

Stop hesitating, start breaking things.

First, join the t.me/sqafun group in Telegram to connect with
other readers of this book, just like you — by joining forces, you will
move faster.

Next, if you need my closer standing by, drop me a line in direct
messages and I'll try to help you out.

My email al.vorvul@gmail.com is also at your constant disposal
for your questions, criticism, and proposals.

The transition from learning SQA to practicing it is not a leap.

It's a series of small, manageable steps.

The best time to start was yesterday.

The second-best time is now.

Go for it.

The tech industry needs more skilled, passionate QA
professionals.

224

http://t.me/sqafun
mailto:al.vorvul@gmail.com

Alexander Vorvul

SOFTWARE QUALITY
ASSURANCE FUNDAMENTALS

Electronic version

The book is protected by Copyright.

Copying for purposes other than personal use is permitted only
with the consent of the Copyright holder.

al.vorvul@gmail.com

Wydawnictwo Gutenberg Publisher
Łobzowska 15-15

31-139 Kraków

office@gutenbergpublisher.eu

© Alexander Vorvul, Minsk 2025

225

mailto:al.vorvul@gmail.com
mailto:office@gutenbergpublisher.eu

	
	
	
	
	
	I. Software Quality Assurance History
	
	1. Software Quality Assurance History
	Long-Term Periods

	
	1.1. 1947–1956 Debugging period
	Historical Context
	Key Characteristics
	Milestones
	Debugging Period Role

	1.2. 1957-1978 Demonstration Period
	Historical Context
	Key Characteristics
	Milestones
	Demonstration Period Role
	

	1.3. 1979-1982 Destruction Period
	Historical Context
	Key Characteristics
	Milestones
	Destruction Period Role
	

	1.4. 1983-1987 Evaluation period
	Historical Context
	Key Characteristics
	Milestones
	Evaluation Period Role
	

	1.5. 1988-2000 Prevention period
	Historical Context
	Key Characteristics
	Milestones
	Prevention Period Role

	
	1.6. 2001-2011 Test Automation Period
	Historical Context
	Key Characteristics
	Automation Period Role

	1.7. 2012-2021 Continuous Testing Period
	Historical Context
	Key Characteristics
	Continuous Testing Period Role

	
	1.8. 2022-Present AI-Driven Testing
	Historical Context
	Key Characteristics
	Milestones
	AI-Driven Testing Period Role

	
	
	
	
	
	
	II. Software Quality
	
	
	2. Software Quality
	Quality
	Software quality
	Assurance
	Quality Assurance
	Software quality assurance
	Software quality assurance engineer

	
	2.1. Software Quality Scopes
	

	2.2. Software Quality Testing
	Key Objectives
	Software Testing Role
	

	2.3. Software Quality Control
	Key Objectives
	Key Activities
	Quality Control Role

	2.4. Software Quality Assurance
	Software Quality Assurance
	Key Role
	Quality Control and Quality Assurance

	2.5. Software Quality Characteristics
	Functionality
	Usability
	Efficiency
	Reliability
	Maintainability
	Portability
	Key Role

	
	2.6. Entry and Exit Criteria
	Entry Criteria
	Exit Criteria

	
	
	
	
	III. Software Development Life Cycle
	3. Software Development Life Cycle
	SDLC Stages
	Benefits
	Drawbacks

	
	3.1. Software Conception Stage
	Requirements Analysis
	Key Activities
	Entry and Exit Criteria

	
	3.2. Software Planning Stage
	Primary Goals
	Key Activities
	Entry and Exit Criteria
	Planning Stage Role

	
	3.3. Software Design Stage
	Key Activities
	Primary Goals
	Exit Criteria
	

	3.4. Software Development Stage
	Key Activities
	Inputs and Outputs
	Programming languages
	During the Development stage the programming language — PL — is chosen according to the type of the software developed.
	To generate the code, developers must also follow the coding guidelines defined by their organization and such programming tools like compilers, interpreters, and debuggers.
	Exit Criteria
	

	3.5. Software Testing Stage
	Key Activities
	Testing Metrics and Measurements
	Entry and Exit Criteria
	Testing Stage Role

	3.6. Software Deployment Stage
	Key Activities
	Deployment Strategies
	Entry and Exit Criteria

	3.7. Software Maintenance Stage
	Key Objectives
	Key Activities
	Maintenance Models
	Maintenance Stage Role
	

	3.8. SDLC Models
	SDPM Approaches
	Predictive SDPMs
	Adaptive SDPMs
	

	
	
	
	
	
	IV. Predictive SDPMs
	4. Predictive SDPMs
	Benefits
	Drawbacks
	Predictive models

	4.1. Bing Bang Model
	Key Characteristics
	Key Activities
	Benefits
	Drawbacks
	

	4.2. Waterfall Model
	The Waterfall SDPM was the first model to be introduced in 1970 by Winston Royce and is also referred to as a Linear-sequential SDPM.
	Key Activities
	Applicability
	Benefits
	Drawbacks

	
	4.3. Incremental Model
	Key Activities
	Process
	Iterations
	Procedure
	Model Characteristics
	Applicability
	Benefits
	Drawbacks
	

	4.4. Iterative Model
	Key Activities
	Workflow
	Builds
	Testing Role
	Applicability
	Benefits
	Drawbacks

	4.5. Spiral Model
	Spirals
	1. Identification
	2. Design
	3. Construct or Build
	4. Evaluation and Risk Analysis
	Key Activities
	Benefits
	Drawbacks
	Applicability

	
	4.6. V-Model
	Key Activities
	Verification Stages
	1. Business Requirements Analysis
	2. System Design
	3. Architectural Design
	4. Module Design
	5. Coding Stage
	Validation Stages
	1. Unit Testing
	2. Integration Testing
	3. System Testing
	4. Acceptance Testing
	Benefits
	Drawbacks
	Applicability
	

	
	
	
	
	
	V. Adaptive SDPMs
	5. Adaptive SDPMs
	Key Element
	Agility
	Agile Methods
	

	5.1. Agile Methodology
	Activities
	Time Boxes
	

	5.2. Agile Methods
	Benefits
	Drawbacks

	5.3. Agile Manifesto
	Agile Touchstones
	Agile Principles
	

	5.4. Rapid Application Development
	Key Activities
	Key Objectives
	Workflow
	Benefits
	Drawbacks
	Applicability
	

	5.5. Rapid Prototyping
	Key Activities
	Key Objectives
	Benefits
	Drawbacks
	Applicability

	
	5.6. Scrum
	Scrum Principles

	
	
	
	
	VI. Scrum Framework
	6. Scrum Framework
	Scrum Values
	

	6.1. Scrum Team
	Scrum Team Structure
	Core Principles
	

	6.2. Product Owner
	Key Activities
	Key Objectives
	Key Responsibilities
	Tasks

	
	6.3. Scrum Master
	Key Responsibilities

	
	6.4. Development Team
	Team Organization
	

	6.5. Scrum Artifacts
	Product Backlog
	Sprint Backlog
	Increment
	

	6.6. Product Backlog
	Key Activities

	6.7. Sprint Backlog
	Tasks
	Task Board
	Re-Prioritization
	

	6.8. Increment
	Key Activities
	Key Objective
	

	6.9. Scrum Events
	Sprint
	Sprint Planning
	Daily Scrum
	Sprint Review
	Sprint Retrospective
	

	6.10. Sprint
	Workflow
	Emphasis
	Sprint Planning
	

	6.11. Daily Scrum
	Key Characteristics
	Key Objective
	After Party

	
	6.12. Sprint Review
	Key Characteristics
	Guidelines

	6.13. Sprint Retrospective
	Guidelines
	Key Features
	Limits

	
	6.14. Backlog Refinement
	Technical Debt
	Technical Debt may also be discussed during the Backlog Refinement.
	Cancelling a Sprint
	
	

	6.15. Scrum Workflow
	Key Stages of the Scrum Process
	1. Product Backlog Creation and Refinement
	2. Sprint Planning
	3. Daily Scrum
	
	4. Sprint Execution
	5. Sprint Review
	6. Sprint Retrospective
	Core Scrum Artifacts

	
	
	
	
	
	VII. Software Testing Life Cycle
	

	7. Software Testing Life Cycle
	STLC Stages
	

	7.1. Test Conception Stage
	Key Activities
	Key Deliverables
	

	7.2. Test Planning Stage
	Test Plan
	Key Deliverables

	
	7.3. Test Design Stage
	Key Activities
	Key Deliverables
	

	7.4. Test Development Stage
	Key Objectives
	Key Activities
	Key Deliverables

	7.5. Test Execution Stage
	Key Activities
	Key Deliverables

	7.6. Test Closure Stage
	Key Objectives
	Test Results Report
	Key Deliverables
	

	7.7. Test Maintenance
	Key Objectives
	Key Activities
	Key Deliverables
	

	
	
	
	
	VIII. Test Documentation
	8. Test Documentation
	Test Documentation Scopes
	Documentation Categories
	Test Execution Documentation
	Test Automation Documents
	Test Policy Documentation

	8.1. Checklist
	Benefits
	Drawbacks

	
	8.2. Test Case or Test Scenario
	Test Case Types
	Mandatory Fields
	Requirement Traceability Matrix
	Formal Test Case Structure
	Test Scenario

	
	

	8.3. Test Script and Test Data
	Test Script Components
	Test Script Development
	Benefits
	Drawbacks
	Test Data
	

	8.4. Test Suite
	Key Objectives
	Test Suite Types
	

	8.5. Test Plan
	Key Objectives
	Key Components
	Benefits

	8.6. Test Strategy
	Key Objectives
	Key Components
	Test Strategy Role

	
	8.7. Test Policy
	Key Objectives
	

	8.8. Test Management Systems
	Key Objectives
	Benefits
	

	
	
	
	
	IX. Software Quality Defects
	9. Software Quality Defects
	Key Characteristics
	Defect Management Role
	Best Practices

	
	9.1. Defect Classification
	Defect Classification By Severity
	Defect Classification By Priority
	Defect Classification By Origin

	9.2. Defect Life Cycle
	Detailed State Transitions

	
	9.3. Defect Report
	Key Components
	Key Characteristics
	Key Objectives

	
	
	
	
	X. Software Testing Classification
	10. Software Testing Classification
	Key Objectives
	

	10.1. Software Conception Stage Categories
	Casual Testing
	Ad Hoc Testing
	Intuitional Testing
	Exploratory Testing

	Formal Testing
	Origins
	User Stories
	Business Scenarios
	Software Requirements Specification
	Formal Testing Types

	

	10.2. Software Planning Stage Categories
	Static Testing
	Tested Documents
	Static Testing Purpose

	Dynamic Testing
	Dynamic Testing Purpose

	10.3. Software Design Stage Categories
	Passive Testing
	Active Testing
	

	10.4. Software Development Stage Categories
	Black Box Testing
	Gray Box Testing
	White Box Testing

	
	10.5. Software Testing Stage Categories
	Operational Testing
	Operational Testing Purposes

	Functional Testing
	Functional Testing Purposes
	Evaluability
	Bilaterality
	Positive Testing
	Negative Testing

	
	10.6. Software Deployment Stage Categories
	Feature Testing
	Regression Testing

	
	10.7. Software Maintenance Stage Categories
	Manual Testing
	Automated Testing

	
	10.8 Software Testing Classification Scheme
	
	
	
	
	XI. Practice
	11. Practice
	Why
	How
	When

