Alexander Vorvul

SOFTWARE QUALITY
ASSURANGE FUNDAMENTALS

Table of Contents

1. Software QUAlity ASSUIANCE HISEOTY.......uecueeeeeeeeeeereeeeeeeeeereereereereereereesesssssssssssennes 5
1.1. 19471956 DebUGGING PEIIOU.........cuvceveeeeereeververerrerrererrerrerreeeseeeeseeseessesseseeseans 6
1.2. 1957-1978 DemoNnStration PEriOd................eeeeeeveereevereereeeereeresvereeresvesessessesenes 9
1.3. 1979-1982 DESLIUCEION PEIIOM.........coevereeereereerereeresrereererreressesesessessesesseseesennes 13
1.4. 1983-1987 EVAlUGLION PEIIOM........ocucveeereeeeereirereererrereereiresessessesessesessessesessenens 17
1.5. 1988-2000 Prevention PeriOd..........eeeeeeeeeeereeeeeeeeeeereereereeseesessessessessessesses 21
1.6. 2001-2011 Test AULOMALION PEIOM...........ceeeereeeeererereerereresveeeresvessesessesenes 25
1.7. 2012-2021 Continuous TeStiNG PeriOd............ueeeeeeeeeevereeveveeveevvevesvervesvesvenen. 27
1.8. 2022-Present Al-DrivVen TESEING..........cueceeveeereeveeireeeeseeereeseesseesesssessssssssssssesses 30
2. SOfEWATE QUALILY.......eeeeeeeveeveveeereeeeeeeteeeeeevereeevesveesvesessssessessssessesessessssessessanen 35
2.7. SOftWAre QUALEY SCOPES....ueeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesessessssssssessssssssssssssessens 37
2.2. SOftWAre QUALLY TSEING.......ueeeeeeeeeeeeeeeeeereereeeereeeereeeeseesessssssesssssssessessessesses 39
2.3. Software QUALIEY CONErOL........ueeeeeeeeeereeeeeecveeeteceeeeveseeeetessesesaeeese s seesenes 41
2.4. SOftware QUAUIEY ASSUIANCE..........ueeeeeereeereerevereresreseevesresessessessssesesesessesessens 43
2.5. Software QUAlLItY CRAATACEETISEICS.......u.uueeeeeeeeeeeeeeeeeeeevesvesvesveseesvsssesseeens 45
2.6. ENErY ANA EXIE CrIb@IIQ.u.uneeeeeeeeneereereeeeereereereereereeseeseeseeseeseessessesessesssssessessessessons 49
3. Software Development Life CYCle......eeeeeeeeeeeeeeeeeeeeeeveeeeveeveeveevsesesenns 51
3.7. SOftware CONCEPLION SEAGE.........ueueeeeeeeerereererereeeerereevereereseeseesessesssessesessesens 54
3.2. SOftware PlANNING SEAGE.........ueeeeeeeeeeeeeeeeeeveveeveveeveevssvessesvssssssssssssssessons 57
3.3. SOftWAre DESIGN SEAGE.........ecueeeeeeeeneeneeneereeeeeerverveseevesvessessessessessessessessessessesees 61
3.4. Software DeveloOpmMeEnt SEAGE............eeeeeeeeeeeeeeveeeveeeresveseesesveeesessessssenes 63
3.5. SOftWAre TESEING SEAGE.........eceeeeeeeeeeeeeereereeereevereresreseesesseessessesssessesessessasenes 66
3.6. SOftWare DeploymMENnt SEAGE.........ueueeeeeeeeeeeeeereeeeereeeeeereereeseeseessesssssssessessens 69
3.7. Software MaintenanCe SEAGE...........eeueeeeeveveveeevevesrervevevesresvessessessessessenes 72
3.8. SDLC MOMEIS......ueeeeeeeeeeeeeeeeeeeeeteeeeeteeveveevesvesvessessessessessessessessesensessessensensensens 75
4. PrediCliVe SDPIMS.........ocueeeeeeeveveeeeeereevereesesveseesessessssessessssessesessessssesessssessessssessesenne 78
4.7. BiNG BANG MOAEL..........oueeeeeeeeeeeeeeeeeeeeeeeeeeesvesrevesvesresssssessessessessessessssssssns 80
4.2. WALerfall MOAEL.............eeeeeeeeeeeeeeecveeeteeeeceeieerestesessessesesssssessssesesessesssenen 83
4.3.InCremental MOdeL................eceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeseeseeseeseesessessesssssesen 86
4.4, JEETALIVE MOAEL.........eeeeeeeeeeeeeeeeeereeeveeevesveeesesresessesesesessesessesssessessasens 90
4.5, SPITAUMOUAEL........eeeeeeeeeeeeeeeeeeveveteeveevesesvesresvessessessesssssessessessessessns 94
G.6. V-MOABL.......eeeeeeeeeeeeeeeeeereeesresvesresressessessessessessessessessessessessesssssesssssssenen 99
e (o o 1o LY B 1Y KR 4
Y Ve [U3 Y L=1 g Yo e (o] (o e | VA 109
5.2, AGIlE MEEROUS.........oeeeeeeeeeeeeeeeeeeeeeeeveeevevessessessessessessesssssesssssssssssssenen 111

1

5.3, AGIlE MANIFESEOQ.......ueeeeeeeeeeeeeeeeereeeeeeeeeeeeeeveseesessessessessessessesssssssssssssessensens 112

5.4. Rapid Application Development.................eeeeeeeveereeeeeereerereereieerecrereesesseseesenns 114
5. 5. RADIA PrOtOLYDING......e.eeeeeeeeeeeeveeeveeevevesvesvesvesvessessessessessessessessessessessessessensons 117
oo T Yot £ 7/ 1 OSSP SSRRUSPRSPPON 120
6. SCTUM FIAME@WOTK......cceoveevereererereereirereereeesesseseesessesessessesessessssessesessessessssessssessens 122
6. 7. SCTUM TOAM......uueeeeeeeeeeeeeeeeeeeiteeeiteeesteeessesessseessseessseesssessssessssessssessssessssssessesans 123
6.2. PrOGUCE QWDeeeeeeeeeeeeeereeeresrereeveeesesvessesssvessssessessssessesssessessssessessssenssens 125
6.3, SCTUM MASEEN.....ueeeeeeeeeeeeeeeeeeteeetes ettt seste s e sae s e saasssas s s sssessssessasessssesssassses 127
6.4. DEVEIOPMENE TOAM.......oeeeeeeeeeeeeeeeeeereeeeeevesresvesvesresresvessessessessessessessessensensons 128
6.5, SCTUM ATEIFACES.....eeeeeeeeeeeeeeeeeeeeeeeeeveeevecveveevereseevessessssessesessessssessesssessesennes 129
6.6. PrOAUCE BACKIOG..........eceeeeeeeeeeeeeereeereeeerereerererevereesessessesessessssessesssessesesessesennes 131
6.7. SPIINE BACKIOG....eeeeeeeeeeeeeeeeeeeeeeeeeeeveeveeveeveveeveevesvesvesvsvessesessssssessessessensons 132
6.8. INCTOMENIL.........ceeeeeeeeeeeeeeeeereeeeeeeteeesteeesaeeessseesssessssessssessssessssessssesesssssssssssssean 134
6.9. SCTUM EVENES.eeeeeeeeeeeeeeeteeeeteeceeeeteecteecsaeeesaesesassessssessssesssesssssssssessssesnes 135
6. T 0. SPIINEeeeeeeeeeeeeeeeeeeeeeeeteereeteetsesaeesas e s esssesssesssssssssssessssssssesssessenses 138
6.7 7. DAILY SCTUM..eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeesseseeseeseessssssssessessssssssssessessessesssssensen 140
6. T2. SPIINE ROVICW.......eeeeeeeeeeeeeeeeeeeecteeeesseeseessssssssssssessssssessssssssessssssessssssessesnsan 142
6.73. SPriNE REEMOSPECLIVE........o.eeeeeveeeeeeeecreeseeeeeeeeressaseeseeesseesseesseesseessssssesssessssesens 143
6.74. BACKIOG REFINGMENIL...........eeoeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeesessssssssssssssssssssssssans 145
6.75. SCIUM WOTKFIOW.....ueeeeeeeeeeeeeeeeeeeeeeeereeeeeeesessesssssesssssssssssssssssssssssnses 147
7. SOftware TeSting Lif@ CYCle.......unuueeeeeeeeereeeeeetecreeeteceeeeseseeessessesessesessenes 151
7.7. TeSt CONCEPLION SEAGE.......u.ueeeeeeeeeeeereeereeeeeeeeeieeieeesteesteessesssessssessssessesssenssesnes 153
7.2. TESE PlANNING SEAQGE.......ueeeeeeeeeeeeeeeeeeeeeeeeeseesesseesessssssssssssssssssssssssssssssses 154
7.3. TESE DESIGN SEAGE.......ueoeeeeeeeeeeeeeveeeeeeeeeeeeeeeresusesssesssesssesssesssesssesssesssesssesssesnns 156
7.4. Test Development SEAGE...........eeeeeeeeerereerereerereereieesessesessesessessssenseses 157
7.5. Test EXecution Stage..............ouuuuuueeeeeeieeeeeiiieeeeiieaa e, 159
7.6. TESE CLOSUTE SEAGE........oceueeeeeeeeeeeeeeeereererereereeeerrevesvesseessessessessesssessns 160
7.7. TeSt MaINteNanCe.............ccoeuueeeeeeeeeeeeeeeeee e 162
8. TeSE DOCUME@NLEQLION...........uoeeeeeeeeeeeeeeeseeeeeceeceeeseeeeeeteesteesaeessessessseesseesesnns 165
8.1, CROCKUISE.......eeeeeeeeeeeeeeeeeevevereeereevessesvesesesessesessessessessssessesseneas 167
8.2. TeSt CASE OF TESL SCONQAIIO...........cecueeeeeererereecerereeereereeiseesseeseesssesseessssseens 170
8.3. Test Script and TeSE DALQ.............oeeeeeeeeeeeeeeeeeeeeeeeeeeveereeseesresvesseesean, 174
8.4, TOSE SUIEG.eeeeeeeeeeeeeeeeeeeeteecteeceeeeecteesteeseeessesseesseesseseesssesesssesseessensenn 178
8.5, TESE PlAN....ueeeeeeeeeeeeeeeeeeeeseererereereesesvessessessesesssssessessessessessssensensens 180
I =X Y ¢ (=T | 182
8.7. TESE POUICY..eueeeeeeeeeeeeeeeeeeeeevesveveeeseesesvesvesvessessesssssssesessessssssensensens 184
8.8. Test ManAagemeENnt SYSEEMS..........uueeeeeeeeeeeeeeeeereeeesreeeeesreeeesssseeeessseenas 185

9.1. Defect ClaSSIfiCALION...........ceeeeerererereerereerereererereiresesseseesesessessesessesesesens 189
9.2. DEfECL Lif@ CYCLO..unnaaeeeeeeeeeeeeeeeeeeeeeeevesvseseeveseeeresssssees 191
9.3. DEECE REPONE.....coeeeeeeeeeevevereerereereeereseesesesessessesessesessesessessssesssessesenes 193
10. Software Testing ClasSifiCAtiON.............eeeeeeeeeeeeeeeeeeeeereeeeeeeveeveeseenes 196
10.1. Software Conception Stage Categories............eeeeeeevervevereerennns 197
10.2. Software Planning Stage CAtegoOries...........uueveeeeeeevereevereveveereenens 202
10.3. Software Design Stage CAteGOries...........ueueereeeeeeeeveeerereereeresrevenns 205
10.4. Software Development Stage Categories............ueeeeeevvereenenne. 207
10.5. Software Testing Stage CAteGories.........uuueeeeveveeereereeeerverresreereens 212
10.6. Software Deployment Stage Categories............uueeveeeveeveereereanns 216
10.7. Software Maintenance Stage Categories.............uuueeververveeveenns. 218
10.8 Software Testing Classification Scheme.................eeeeeeeeeeeevevennnn. 220
TT. PIACEICE..eeeeeeeeeeeeeeeeecteeeeeeeeeesteestseseesasessesssesssesssesssssssssesssesssassesssesseens 222

|. Software Quality
Assurance History

1. Software Quality Assurance
History

Software quality assurance, as a discipline, has evolved over
several decades, and its history can be divided into long-term periods
that reflect significant changes in technology, methodologies, and
practices.

These periods highlight the evolution of software testing from a
manual, ad-hoc activity to a highly automated, Al-driven discipline.

Long-Term Periods

One may differentiate Five important Software quality assurance
periods prior to the end of the XX century:

1947-1956 — Debugging period
1957-1978 — Demonstration period
1979-1982 — Destruction period
1983-1987 — Evaluation period
1988-2000 — Prevention period

Extending the trend for the XXI*" century, one could single out
the next three long-distance SQA testing eras:

e 2001-2011 — Test automation period
e 2012-2021 — Continuous testing period
e 2022-Present — Al-driven testing period

1.1. 1947-1956 Debugging period

The primary objective during the Debugging period revolved
around detecting and resolving flaws, or "bugs", within software
programs.

Unlike modern testing paradigms, which emphasize prevention
and systematic validation, early efforts were predominantly centered
on reactive debugging — locating and correcting errors after they
manifested in the code.

Historical Context

This period corresponds to the formative years of computing —a
time when electronic computers transitioned from theoretical
constructs to practical tools capable of executing programmed
instructions.

Software development was in its infancy, and structured
approaches to quality assurance had yet to emerge.

Testing, as a formal discipline, did not exist.

Instead, the process was largely synonymous with debugging —
an ad hog, trial-and-error method of ensuring that programs
functioned as intended.

Key Characteristics

The key characteristics of the Debugging period are as follows:

e Developer-centric debugging — Since specialized testing roles
had not yet been established, programmers themselves were
responsible for verifying their code.

Testing was an intrinsic part of the development cycle rather
than a distinct stage.

e Absence of formalized tools and techniques — Unlike today’s
sophisticated testing frameworks, early debugging relied on
manual inspection, print statements, and rudimentary diagnostic
methods.

There were no automated testing suites, standardized
methodologies, or dedicated quality assurance teams.

e Basic reliability as the primary goal — The chief measure of
success was wWhether a program executed without crashes or
glaring inaccuracies in output.

The concept of comprehensive validation, such as edge-case
analysis, performance benchmarking, or user experience
evaluation, was not yet a consideration.

Milestones

Below are the main milestones of the Debugging period:

e Bug and debugging notions — In 1947, the terms "bug" and
"debugging" were coined when engineers working on the
Harvard Mark Il computer discovered an actual moth had got
stuck in a relay, causing it not to make contact.

Grace Murray Hopper detailed the incident in the work log,
pasting the moth with tape as evidence and referring to the moth
as the "bug" causing the error, and to the action of eliminating
the error as "debugging".

e Reactive Problem-Solving Mindset — Debugging was perceived
as a corrective measure rather than a preventive one.

Developers addressed issues only after they arose, often in
response to observable failures, rather than proactively
designing tests to uncover hidden defects.

Debugging Period Role

This nascent stage of software testing laid the groundwork for
future advancements in quality assurance.

At that time, the tests were focused on the hardware because it
was not as developed as today and its reliability was essential for the
proper functioning of the software.

While primitive by contemporary standards, the emphasis on
debugging established the foundational principle that software must
be scrutinized for errors — a concept that would later evolve into
systematic testing methodologies, specialized tools, and dedicated QA
professions.

1.2. 1957-1978 Demonstration
Period

The central objective of the Demonstration period shifted toward
proving that the software operated in strict accordance with its
intended design and specifications.

Unlike the earlier era, where testing was synonymous with
reactive debugging, this period emphasized validation, ensuring that
the software not only ran without errors but also fulfilled its
predefined functional requirements.

Historical Context

As software systems expanded in scale, functionality, and
criticality, the limitations of ad-hoc debugging became increasingly
apparent.

Organizations recognized that merely eliminating crashes was
insufficient — software now needed to meet business and operational
needs for sure.

This era saw the gradual transition from informal, developer-led
error-fixing to a more structured — though still nascent — effort to
verify software correctness.

Testing remained relatively informal compared to modern
standards, but its purpose evolved — shifting from defect correction
to requirement validation.

The Focus was no longer solely on "making the program work"
but on demonstrating that it worked as expected under defined
conditions.

Key Characteristics

The key characteristics of the Demonstration period are as
Follows:

o Validation-centric approach — Testing was primarily employed
to affirm that the software executed its intended functions
correctly, rather than aggressively uncovering hidden flaws.

The mindset leaned toward confirmation — "Does it work as
specified?" — rather than investigation — "Where does it fail?".

o Defect-averse mindset — The emphasis was on proving the
absence of critical defects, often leading to optimistic
assessments.

Unlike later methodologies that actively sought weaknesses —
for instance, stress testing, boundary analysis, etc — this
approach assumed correctness unless evidence proved
otherwise.

o Late-stage testing - Testing was frequently conducted toward
the end of development, often as a final checkpoint before
release.

This "test-last" mentality contrasted with modern iterative
testing, where evaluation occurs continuously throughout the
development lifecycle.

e Manual and Ad-Hoc execution — Despite the growing need for
validation, testing lacked standardized methodologies or
automation.

Most checks were performed manually, relying on developer
intuition or rudimentary test cases.

10

Milestones

e Tests development — In 1957, Charles Baker explained the

necessity for the test development aimed at ensuring the
software meets its pre-designed requirements.

Thus, the distinction between software functionality control —
Debugging — and software quality maintenance — Testing —
was introduced for the Testing to be carried out as a separate
activity.

Tests importance — Test development became more important
as more expensive and complex applications were being
developed, and the cost of solving all these deficiencies affected
a clear risk to the profitability of the project.

A special focus was placed on increasing the quantity and quality
of tests. For the First time the quality of an application began to
be linked to the state of the testing stage.

The goal of testing was to demonstrate that the software
performed what it had initially been designated for, using
expected and recognizable parameters.

Emergence of Verification and Validation — V&V — The
distinction between verification — "Are we building the product
right?" — and validation — "Are we building the right product?"
— began to take shape.

This framework laid the groundwork for later quality assurance
disciplines.

Continued reliance on manual processes — While the
philosophy of testing matured, practices remained
labor-intensive and unstructured.

11

The absence of systematic test design — e.qg., test plans,
coverage metrics — meant that effectiveness varied widely
across projects.

Demonstration Period Role

The Demonstration period represented a critical transition
moving software quality assurance from reactive debugging toward
deliberate validation.

However, the lack of formalized processes and early testing
integration meant that many latent defects still escaped detection
until deployment.

These gaps would later drive the development of methodical
testing frameworks, automated tools, and proactive quality measures
to bridge the debugging and modern testing in subsequent eras.

12

1.3. 1979-1982 Destruction Period

The Destruction period represented a fundamental
transformation in software quality assurance approach, where the
primary objective evolved from proving correctness to actively seeking
and exposing defects.

Testing was no longer viewed merely as a validation step but
rather as a systematic effort to stress, challenge, and intentionally
break the software under controlled conditions.

The underlying premise was that improving software quality
required aggressively identifying weaknesses before release, rather
than passively confirming functionality.

Historical Context

As software systems grew more sophisticated and became more
mission-critical, the limitations of traditional verification-focused
testing became apparent.

A proactive defect-hunting mindset emerged, recognizing that:

e Software reliability could not be assumed — it had to be
rigorously challenged

e The absence of observed failures did not equate to correctness
— flaws often lay hidden in untested scenarios

e Human psychology influenced testing effectiveness —
developers naturally avoided tests that might "break" their code

The Destruction period marked the professionalization of testing
as a distinct discipline, shifting from an optimistic demonstration of
Functionality to a pessimistic, investigative process aimed at
uncovering faults.

13

Key Characteristics

Below are the key characteristics of Destruction period:

Formalization of testing — Testing transitioned from an
informal, post-development activity to a structured stage
integrated into the software development lifecycle.

Dedicated test cases, plans, and documentation became
standard, ensuring systematic evaluation rather than ad-hoc
checks.

Methodical testing techniques —- Some techniques represented
early efforts to systematize test design, moving beyond
trial-and-error were initially introduced during the Destruction
period:

o Boundary value analysis — BVA — Focused on testing at
the edges of input ranges, where defects frequently cluster

o Equivalence partitioning — Reduced redundancy by
grouping inputs that should trigger similar behaviors,
optimizing test coverage

Defect maximization objective — The success of testing was
measured by its ability to expose flaws, not just confirm expected
behavior.

This required creative, adversarial thinking — crafting scenarios
that exploited potential weaknesses in logic, input handling, or
edge cases.

Proactive mindset — Testing was no longer about waiting for
fFailures to emerge in production but preemptively forcing
failures in development.

This shift reduced the cost and risk of late-stage defect discovery.

14

Milestones

e In 1979, Glenford Myers, with the definition below, radically
redefined the procedure for detecting faults in the program:

"Software testing is the process of running a program with the
intention of finding errors."

Myers' concern was that in pursuing the goal of demonstrating
that a program is flawless, one could subconsciously select test
data that has a low probability of causing program Failures,
whereas if the goal is to demonstrate that a program is flawed,
our test data will have a greater probability of detecting them
and we will be more successful in testing and thus in software
quality.

From now on, the tests will try to demonstrate that a program
does not work as it should, contrary to how it was done until
then.

This reorientation laid the groundwork for modern testing
theory, prioritizing defect detection over confirmation, leading
to new techniques of testing and analysis.

e Destructive testing methodologies — Myers' philosophy
spurred the development of new techniques explicitly designed
to:

o Expose hidden assumptions in code
o Challenge error-handling robustness
o Reveal edge-case vulnerabilities

Testing was no longer a passive checkpoint but an active
quality-improvement mechanism.

15

Destruction Period Role

The Destruction period permanently altered software
engineering practices by establishing core principles that endure today:

e Testing must be skeptical — assuming defects exist until proven
otherwise

e Quality is achieved through rigorous challenge — not just
affirmation

e Test design is a distinct skill — requiring specialized knowledge
beyond coding proficiency

The introduction of structured techniques — BVA, Equivalence
partitioning, etc — and Myers' psychological insights formed the
foundation for subsequent advancements in automated testing,
risk-based testing, and continuous quality assurance.

16

1.4.1983-1987 Evaluation period

The Evaluation period represented a fundamental transformation
in how the software industry conceptualized and implemented quality
control.

Rather than treating testing as a final gatekeeping activity,
organizations began embracing a comprehensive philosophy of
continuous quality evaluation spanning the entire software
development life cycle.

This paradigm shift moved quality considerations:

e From being reactive to being proactive
e From being fragmented to being integrated
e From being defect-focused to being quality-centric

Historical Context

By the early 1980s, several converging factors necessitated this
evolution:

e Increasing software complexity in business and mission-critical
systems

e Rising costs associated with post-release defect remediation

e Growing recognition that quality cannot be "tested in" but must
be built into the process

e Maturing understanding of software engineering as a disciplined
practice

The software industry transitioned its view on testing:

e from separate stage to an integrated process
e from defect detection tool to a quality assurance mechanism
e from final verification step to a continuous evaluation practice

17

Key Characteristics

The key characteristics of the Evaluation period are as follows:

Lifecycle-wide quality assessment — Quality evaluation
became embedded in every Software development life cycle
stage:

o Requirements analysis — testability verification
o Design — architectural reviews

o Development — unit testing

o Deployment — system testing

o Maintenance — regression testing

The development gained a V-shaped prominence, explicitly
mapping test activities to each development stage.

Formalization of testing practices — Standardized
methodologies emerged — for example, IEEE 829:

o Documentation — test plans, cases, procedures — became
mandatory

o Metrics were instituted and measurement programs were
developed

o Specialized QA roles and organizational structures
developed

Quality assurance as an organizational function — Quality
Assurance became distinct from Testing, encompassing:

o Process definition and improvement
o Prevention-oriented activities

o Organizational quality culture

o Metrics and benchmarking

The Quality Gate concept institutionalized checkpoints
throughout the software development lifecycle where specific
quality criteria must be met before a project can progress to the
next stage.

18

e Process-driven testing approach:

©)

Repeatable, defined test processes replaced Ad-hoc
methods

o Test planning became fForward-looking rather than reactive
o Traceability matrices linked requirements to test cases
o Formal entry and exit criteria governed test stages

Milestones

e In 1983, IEEE 829 Standard For Software Test Documentation
established uniform documentation requirements including:

O O O O O O

Test plan structure

Test case specifications
Test procedure definitions
Test log requirements
Incident reporting formats
Test summary reporting

The Standard introduced a common language for test
professionals enabling process consistency across organizations.

e The advent of Automated testing tools was another significant
achievement of the Evaluation period when:

@)

©)

O

Early test automation frameworks emerged
Regression testing became practical at scale
The foundation for modern continuous testing was laid

e Institutionalization of Quality Metrics introduced:

@)
@)
@)
@)

Defect density measurements
Test coverage percentages
Requirements traceability matrix
Escape defect analysis

These provided quantitative quality assessments.

19

e Legacy and Transition to Modern Practices — the Evaluation
Period established foundational concepts that continue to shape
quality practices today:

o The principle that quality is a process, not an event

o The understanding that testing must be planned and
managed

o The recognition that quality requires organizational
commitment

o The framework for integrating testing throughout
development

Evaluation Period Role

This era's emphasis on standardization, documentation, and
process orientation directly enabled subsequent innovations like:

e Capability Maturity Model — CMM — integration

e Agile testing methodologies

e Continuous integration/continuous delivery — Cl/CD — pipelines
e DevOps quality practices

The institutionalization of quality assurance during the
Evaluation period transformed software testing from a technical
afterthought to a professional engineering discipline, establishing
patterns and practices that remain relevant for decades later.

20

1.5.1988-2000 Prevention period

The Prevention period marked a paradigm shift in software
quality management, transitioning from reactive defect detection to
proactive defect prevention.

The industry recognized that finding bugs late in the software
development cycle was costly and inefficient, leading to a strategic
emphasis on early testing, rigorous process controls, and continuous
improvement.

Testing evolved from being a post-development checkpoint to an
integrated, iterative practice embedded throughout the software
development lifecycle — SDLC.

The goal was no longer just to identify flaws but to prevent them
from occurring in the first place through systematic process
enhancements and early validation.

Historical Context

Several key factors drove this transformation:

e Increasing Software Complexity — As applications grew larger
and more interconnected, late-stage defect resolution became
prohibitively expensive

e Cost of Late Defects — Studies showed that bugs found after
the software release were 10-100 times more expensive to fix
than those caught early

e Demand for Faster Releases — The emergence of
internet-driven business models necessitated shorter
development cycles, making traditional "test-last" approaches
obsolete

e Maturity of Software Engineering — The discipline began
adopting formalized best practices inspired by manufacturing
quality control

21

This period saw the professionalization of testing as a strategic
function, rather than a tactical afterthought.

Key Characteristics

The key characteristics of the Prevention period are as follows:

o Early and Continuous Testing — or Shift-Left — Testing
activities moved as early as possible in the SDLC with the relevant
practices introduced:

o

Requirements reviews — Formal inspections to ensure
clarity, completeness, and testability before coding began
Design inspections — Rigorous evaluation of architectural
decisions for potential flaws

Code walkthroughs and Peer reviews — Collaborative
defect prevention via manual code analysis

The practices led to reduced rework by catching ambiguities and
design flaws before implementation.

o Process-centric quality assurance:

O

o

Quality Gates — Mandatory checkpoints — at the end of
each stage and alike — to enforce standards
Standardized methodologies — Adoption of frameworks
like Capability Maturity Model and Agile Iterative
Development which enabled continuous feedback via
incremental testing

Metrics-driven improvement — Defect density, escape
rates, and test coverage became key performance
indicators

e Tooling and Automation advancements:

O

O

Static analysis tools — Automated code review for early
defect detection, fFor instance, linting tools

Test automation frameworks — Dedicated software
testing automation and software quality assurance
products emerged

22

o CI/CD precursors — Early Continuous Integration and
Continuous Development tools enabled frequent validation

e Cultural shift toward quality ownership:

o Shared responsibility — Developers, testers, and business
analysts collaborated on quality

o Prevention mindset — Teams focused on getting it right
the First time rather than relying on downstream testing

Milestones

e Formalization of Shift-Left testing — Testing early and often
principle became a cornerstone of modern SDLCs and influenced
later methodologies like Continuous Testing

e Rise of Agile iterative development:

o Scrum — 1995 — and Extreme Programming — XP, 1996
— methodologies embedded testing into short cycles

o Test-Driven Development — TDD — emerged as a
prevention-focused practice

e Growth of Testing tools and frameworks

Industry Standards Expansion:

o 1SO 9000-3 — 1997 — Provided QA guidelines for software
development

o IEEE 1012 — 1998 — Standardized verification and
validation processes

Prevention Period Role

The Prevention Period laid the groundwork for the future
software quality assurance process enhancements:

e DevOps — Merging development and operations with quality as
a shared goal

23

e Shift-Right — Complementing early testing with production
monitoring

e Quality Engineering — Beyond "testing", encompassing
design-for-quality principles

This period's emphasis on prevention, automation, and process
discipline remains central to contemporary software engineering,
proving that proactive quality assurance is far more effective than
reactive debugging.

24

1.6. 2001-2011 Test Automation
Period

The first decade of the XXI*" century marked a transformative
period in software quality assurance, characterized by the widespread
adoption of automation and the emergence of new testing paradigms.

As software systems grew in complexity and release cycles
accelerated, manual testing became increasingly impractical.

This period saw the industrialization of testing through
automation frameworks, agile-aligned methodologies, and early
Al-assisted tools — laying the foundation For modern DevOps and
continuous testing practices.

Historical Context

Several key drivers fueled the shift to systematic and intelligent
testing focused on efficiency and scalability:

e Explosion of Web applications — The dot-com boom and Web
2.0 demanded cross-browser compatibility and 24/7 reliability

e Agile adoption — Shorter development cycles required faster
feedback loops via automation

e Cost Pressure — Studies showed automation could reduce
regression testing effort by more than a half

e API-Centric Architectures — Service-Oriented Architecture —
SOA — made API testing a critical need

25

Key Characteristics

Below are the key innovations and methodologies of the

Automation era:

Test-Driven Development — TDD — Writing tests before code
greatly reduced defect rates and forced modular, testable
software design

Behavior-Driven Development — BDD — Bridged business-IT
gaps using natural-language specifications using human-readable
syntax, aligned testing with user stories, and Enabled
non-technical stakeholders to validate logic

The Selenium revolution — 2004 — Selenium WebDriver, which
solved browser automation with cross-browser support and
language-agnostic bindings became the de facto standard for
web Ul testing

API testing maturity — The shift from Ul-centric to API
validation enabled early — shifted left — integration testing and
performance benchmarking

Cloud-based testing platforms — Eliminated lab maintenance
costs and provided real-device testing, which is critical for mobile
development

Automation Period Role

The Automation period transformed testing from a manual job to

a strategic, tech-driven discipline — proving that Quality at Speed was
achievable through innovation.

26

1.7. 2012-2021 Continuous
Testing Period

The period between 2012 and 2021 marked a revolutionary shift
in software development and testing, driven by the widespread
adoption of DevOps principles and Continuous Testing.

This era was defined by the convergence of development — Dev,
testing — QA, and operations — Ops, transforming traditionally
isolated functions into a collaborative, automated pipeline.

The primary goal was to accelerate software delivery while
maintaining high quality, achieved through automation, infrastructure
innovation, and cultural change.

Historical Context

Several industry trends necessitated this evolution:

o Demand for Faster releases — The rise of cloud computing and
Software as a Service models required continuous deployment,
that is daily or hourly releases

e Microservices architecture — Distributed systems increased
complexity, making End-to-End testing more challenging

e Agile at scale — Large organizations adopted Scrum, Kanban,
and Scrum agile framework — SAFe, — requiring testing to keep
pace with rapid iterations

e Cost of manual processes — Manual testing bottlenecks
appeared to significantly delay releases.

This period saw the death of the "throw-it-over-the-wall"
mentality, replacing it with shared ownership of quality.

27

Key Characteristics

o Shift-Left, or Early Testing:

o Testing moved earlier in the SDLC, with developers writing
Unit tests, Integration tests, and API tests alongside code

o Test-Driven Development, TDD, and Behavior-Driven
Development, BDD, became standard in Agile teams

o Shift-Right, or Production Testing, extended Testing into
production via Real-user monitoring — or RUM, — A/B Testing,
and other techniques

e Infrastructure as Code — 1aC;

o Containerization tools — such as Docker, 2013 —
revolutionized testing by:

» Packaging apps and dependencies into lightweight,
portable containers

= Enabling consistent test environments, eliminating
"works on my machine" issues

o Orchestration tools — such as Kubernetes, 2014 —
automated container governance, allowing scalable test
clusters

o laC Tools — such as Terraform, Ansible — automated
environment provisioning, reducing setup time from days
to minutes

e CI/CD pipelines and Automated testing — Continuous
integration and Continuous development tools allowed
automating:

o local and in-cloud Build-Test-Deploy cycles
o parallel test execution across environments

28

o Site Reliability Engineering — SRE — emerged, blending
Operations and Quality Assurance.

Continuous Testing Period Role

This period democratized testing, making it every engineer’s
responsibility rather than a QA-only task.

It transformed testing from a slow, manual process to a fast,
automated, and intelligent practice.

By integrating testing into CI/CD, infrastructure, and monitoring,
it laid the groundwork for today’s autonomous, Al-enhanced practices
giving the birth for Continuous Quality.

Continuous testing became a necessity rather than an option,
ensuring that software kept pace with the demands for rapid delivery
and high user expectations.

It proved that speed and quality are not trade offs, but mutually
achievable goals.

29

1.8. 2022-Present Al-Driven
Testing

The current testing period, Artificial Intelligence — Al — and

Machine Learning — ML — are fundamentally redefining how testing is

conceived, executed, and optimized.

Al-driven testing — or Al-powered testing — is the use of

Artificial Intelligence and Machine Learning to automate and enhance

software testing processes.

No longer confined to scripted validations, testing has evolved
into an intelligent, predictive, and self-improving process that spans

the entire software lifecycle.

Historical Context

Several converging trends have accelerated this transformation:

e Al maturation — Breakthroughs in deep learning enabled
practical applications beyond research labs

o Testing complexity crisis — With systems becoming more

complex, traditional methods became economically
unsustainable

o Generative Al explosion — The 2022 ChatGPT release proved
Al's potential to create test artifacts, not just analyze them

Key Characteristics

Key Technologies Behind Al-Driven Testing are:

e Machine Learning — ML — Improves test scripts over time by

learning from past executions

30

e Natural Language Processing — NLP — Converts plain-text
requirements into automated test cases

e Computer Vision — Uses image recognition for Ul testing, for
instance, identifying dynamic elements

e Predictive Analytics — Identifies high-risk areas needing more
testing

Milestones

The key characteristics of the Al-Driven Testing are as follows:

e Self-Healing Test Automation — Traditional tests broke due to:

o Dynamic Uls
o Environment inconsistencies
o Flaky network conditions

Al Tools use ML to:

o Detect when element locators change

o Automatically update selectors while maintaining test
intent

o Learn from corrections to improve future resilience

This reduces test maintenance, enabling sustainable automation
at scale.

e Visual validation with Computer vision:

o Traditional tools validated HTML structure

o Visual Al tools use convolutional neural networks — CNNs
— to detect visual regressions at pixel level and ignore
non-impactful changes

e ML-powered test impact analysis — ML tools can:
o Analyze code changes via static analysis

o Map modifications to affected test cases

31

o Prioritize test execution based on historical defect data,
code complexity metrics, and business criticality

e Codeless automation tools lower the automation barrier the
following ways:

o Use Natural language processing — NLP — to translate
plain languages to test scripts

o Provide visual modeling interfaces

o Auto-generate maintenance scripts

As a result, codeless automation:

o Enables subject matter experts to create tests
o Reduces automation skills gap
o Accelerates test coverage expansion

Al-Driven Testing Period Role

The current era does not just change how we test, but what it
means to deliver quality software in an Al-driven world.

The organizations thriving in this new paradigm are those
treating quality as a strategic differentiator rather than a compliance
checkpoint.

Unlike traditional scripted automation, Al-driven testing
leverages intelligent algorithms to:

Generate test cases
Self-heal test scripts
Predict defects
Optimize test coverage
Analyze test results

As a result, the most obvious benefits of Al-Driven Testing are:

e Faster Test Creation — Al generates tests from requirements or
user behavior

32

e Reduced Maintenance — Self-healing tests minimize script
updates

e Smarter Test Execution — Prioritizes critical test cases

e Improved Accuracy — Reduces false positives and negatives

e Enhanced Test Coverage — Al explores edge cases humans
might miss

While not a complete replacement for human testers, Al

significantly reduces manual effort and improves software reliability.

Al will not replace testers in the nearest fFuture.

But testers who use Al may definitely replace those who don't.

33

Il. Software Quality

34

2. Software Quality

Quality

Quality is a set of inherent properties of an object that allows it
to satisfy implicit or explicit needs.

Software quality

Software quality is the degree to which a software reliably
performs its intended operations without errors or deviations from
specified requirements.

It should mean that the application is free from vulnerabilities,
either intentionally designed into the software or accidentally inserted
at any time duringits lifecycle.

Assurance

Assurance is a positive declaration on a product or service, which
gives confidence.

It provides a guarantee that the product works correctly as per

the expectations or requirements.

Quality Assurance

Quality assurance — QA — is a way of preventing defects in
created products and avoiding problems when delivering products or
services to customers.

Quality assurance focuses on improving the development process
and making it efficient and effective as per the quality standards
defined For products.

35

Software quality assurance

Software quality assurance — SQA, or QA — is the constant
coordination of the engineering processes aimed to safeguard proper
quality of the software and its compliance against the defined
standards.

Software quality assurance engineer

Software quality assurance engineer — SQAE — is a specialist
focused on ensuring the software quality against the requirements and
standards during all stages of the software development process.

36

2.1. Software Quality Scopes

Software quality encompasses three critical scopes, each playing
a distinct role in delivering reliable products:

e Software quality testing is the activity aimed at detecting issues
in the product and executing systematic checks to identify
defects, covering functional, performance, and security
validations

e Software quality control is a terminal process of issues
detection in a product before it is delivered to end users which
involves defect scanning through inspections, reviews, and
real-time monitoring

e Software quality assurance is a process which assures that all
software engineering processes, methods, activities, and work
items are monitored, streamlined and comply with the defined
standards

Software quality scopes

37

Together, these scopes form a holistic quality framework
ensuring software meets both technical requirements and user
expectations efficiently:

e Testing identifies defects and verifies correctness
e Control monitors quality and enforces compliance
e Assurance prevents defects and improves processes

By integrating all three, organizations achieve higher reliability,
reduced costs, and sustained customer trust.

38

2.2. Software Quality Testing

Software Quality Testing is an evaluation-oriented activity
designed to ensure a software application meets specified
requirements, functions correctly, and delivers a high-quality user
experience.

It involves identifying defects, verifying functionality, and
assessing performance, security, usability, and reliability.

Testing can be performed by a tester or a dedicated team of
testers.

This process may also include a stage of test planning.

Key Objectives

Software quality testing is driven by several key objectives that
collectively ensure the delivery of a robust and reliable product.

These objectives include:

e Defect detection — to systematically identify and document
bugs, errors, and inconsistencies prior to release

e Requirements validation — to verify that the final software
product aligns with all defined business objectives and user
requirements

e Performance evaluation — to assess critical non-functional

attributes such as speed, scalability, and stability under expected

load conditions

e Security assurance — to proactively identify security
vulnerabilities and ensure the software is protected against
potential threats and breaches

39

e Usability verification — to evaluate the user interface and
experience, ensuring the software is intuitive, efficient, and
satisfactory for the end-user

e Compliance verification — to confirm that the software adheres
to all applicable industry standards, legal requlations, and
internal policies

Software Testing Role

The primary purpose of testing is to detect software failures so
that defects may be discovered and corrected.

Software quality testing:

Reduces risks of software failures

Improves experience of the customer
Lowers costs of the long-term maintenance
Ensures compliance with industry regulations

The role of software testing often means the examination of
code as well as its execution in various environments and conditions
being guided by the following statements:

e Testing cannot establish that a product functions properly under
all conditions

e Testing can only establish that it does not function properly
under specific conditions.

By implementing rigorous testing processes, organizations can
deliver reliable, secure, and high-performing software products.

40

2.3. Software Quality Control

Software Quality Control — SQC — is a verification-oriented

activity designed to identify and correct software defects by verifying
adherence to predefined quality standards.

SQC focuses on detecting deviations from requirements through

systematic testing, reviews, and inspections before the product
reaches users.

Key Objectives

The main Quality Control objectives are as follows:

Defect detection — Finding bugs, errors, or non-conformities in
code, design, or documentation

Standards compliance — Ensuring alignment with functional
requirements, industry standards, and organizational guidelines
Process enforcement — Validation the development workflows,
including coding practices and testing protocols, are followed

Key Activities

Software Quality Control activities usually include:

Testing — Execute test cases to uncover functional or
non-functional defects

Peer Reviews — Manual examination of code or documents by
team members

Static Analysis — Automated checks for code quality issues
without execution

Dynamic Analysis — Software behavior monitoring during
runtime

Audits — Formal inspections to verify compliance with processes
and standards

41

Quality Control Role

During the software quality control, testing team verifies the
product's compliance with the functional requirements and this way:

e Reduces post-release Failures — crashes, security breaches, etc

e Saves costs — avoiding the defects post-launch correction which
is many times more expensive

e Builds user trust — by delivering reliable, high-quality software

42

2.4. Software Quality Assurance

Software Quality Assurance

Software quality assurance — SQA, or QA —is a planned and
integral validation-oriented activity focused on meeting requirements
for a product's quality aimed at further quality system improvement.

SQA assures that all software engineering processes, methods,
activities, and work items are monitored, streamlined, and comply with
the defined standards.

Software Quality Assurance incorporates all software
development processes starting from defining requirements to coding
until release.

Key Role

Software Quality Assurance is based on engineering processes
that guarantee quality in a more efficient way than Software Quality
Control.

Software Quality Testing and Software Quality Control are able
to detect the major amount of issues in the product but this doesn't
mean that these defects won't take place again.

The role of SQA is to re-engineer the system so that further
occurrence of these defects won't happen; in fact, it may not include
any testing at all.

The prime goal of the Software Quality Assurance is to ensure
the quality of software products or services provided to the customers
by an organization.

43

Quality Control and Quality Assurance

Software Quality Control is distinct from Software Quality
Assurance.

Software Quality Control is a validation of artifacts' compliance
against established criteria — Finding defects.

Software Quality Assurance encompasses processes and
standards for ongoing maintenance of high quality products, for
instance, software deliverables, documentation, and processes —
avoiding defects.

The difference between Software Quality Control and Software
Quality Assurance may be stated as follows:

e SQC s a product oriented activity
e SQA s a process oriented activity

Software Quality Control keeps track of software development
results to comply with requirements.

Software Quality Assurance traces all the software development
processes to follow in due manner.

44

2.9. Software Quality
Characteristics

Software quality characteristics — often called Quality
Attributes or Non-Functional Requirements — are the measurable
properties of a software system that define its fitness for the purpose,
customer experience, and adherence to requirements.

PORTABILITY

y QUALITY N

CHARACTERISTICS

MAINTAINABILITY

RELIABILITY

The main software quality characteristics

45

These characteristics serve as benchmarks to evaluate how well
the software performs, behaves, and meets stakeholder expectations

Functionality

Functionality is the ability of a software to bear specified
properties.

Functionality embraces:

Suitability

Integrity

Security

Accuracy, and other properties

Usability

Usability is the capability of a software to be easily understood
and applied.

Usability comes over:

Operability

Learnability

Accessibility
Attractiveness, and so on

Efficiency

Efficiency is the relationship between the level of software
performance and the amount of resources needed.

Efficiency involves:

e Capacity
e Time behavior
e Resource utilization

46

Effectiveness, and so forth

Reliability

Reliability is the ability of software to continue functioning

under stated conditions over a given period of time.

Reliability spans:

Recoverability
Availability
Stability
Consistency, etc

Maintainability

Maintainability is the effort needed to make specified

modifications.

Maintainability takes in:

Scalability

Reusability
Modularity
Testability, and others

Portability

Portability is the ability of the software to be transferred from

one environment to another.

Portability reaches out to:

Installability
Replaceability
Compatibility
Coexistence, etc

47

Key Role

Understanding and prioritizing software quality characteristics is
a fundamental activity in software engineering.

48

2.6. Entry and Exit Criteria

Criterion is a principle or standard to judge something.
Each stage of the Software development and Software testing

life cycle has its own Entry and Exit criteria.

Entry Criteria

Entry criteria are the criteria which must be met before initiating
a specific development or testing stage.

It is a predefined set of conditions that must exist before a unit
of development or testing work can commence.

It is used as a process control mechanism to determine the
cost-effectiveness of initiating stage activities.

The team should enter the next stage only after the exit criteria

for the previous one is met.

Exit Criteria

Exit criteria are the criteria which must be met before
completing a specific development or testing task or a process.

It is a predefined set of conditions that must exist before a unit
of development or testing work can be deemed completed.

It is used as a process control mechanism to verify that a
development or testing stage has been completed and that its
products are of acceptable quality.

Exit criteria define the deliverables to be completed before the
stage to be left.

49

lll. Software
Development Life Cycle

50

3. Software Development Life
Cycle

Software Development Life Cycle — SDLC — is a process of
software production with intent to design, develop and test an
application of the highest quality, at lowest cost, and in the shortest
time possible.

SDLC — also called Software development process, SDP — may
be named a framework to define tasks performed at each step of the
software production.

SDLC Stages

Software development efforts are structured into several stages
and the Software Development Life Cycle serves to encompass them.

The Cycle does not conclude until all the requirements have been
fulFilled, and will continue until all the potential needs are adjusted
within the system.

SDLC provides a well-structured flow of stages that help an
organization to quickly produce high-quality, well-tested, and ready for
production use software.

Software Development Life Cycle consists of a detailed
consequence of steps describing how to develop, maintain, alter, and
replace specific software, and includes the following stages:

Software Conception
Software Planning
Software Design
Software Development
Software Testing
Software Deployment
Software Maintenance

NounhkwnN =

51

SOFTWARE
PLANNING

SOFTWARE SOFTWARE
MAINTENANCE DESIGN

SOFTWARE

CONCEPTION

SOFTWARE SOFTWARE
DEPLOYMENT DEVELOPMENT

SOFTWARE
TESTING

Software Development Life Cycle

Benefits

SDLC works by lowering the cost of software development while
simultaneously improving quality and shortening production time.

SDLC achieves these apparently divergent goals by following a
plan that removes the typical pitfalls of software development
projects.

52

SDLC has a strong focus on the testing stage — being a repetitive
methodology, it ensures code quality at every cycle.

The biggest advantage of the Software Development Life Cycle is
that it provides control of the development process to a certain extent
and ensures the system complies with all the requirements that have
been specified.

Drawbacks

SDLC does not work so well where there are levels of uncertainty
or unnecessary overheads.

It directs the development efforts with an emphasis on planning,
but the system does not encourage creative input or innovation
throughout the lifecycle.

53

3.1. Software Conception Stage

Software Conception is the stage where end user business
requirements are analyzed and project goals converted into defined
system functions that the organization intends to develop.

That's the reason for it to be also called Software Ideation or
Requirements Analysis stage.

Requirements Analysis

Conducted during the Conception stage, Requirements Analysis
is the foundation of successful software development as it ensures the
final product aligns with business goals, user needs, and technical
feasibility.

The Requirements Analysis is indispensable for the following
Main reasons:

e Defines clear project scope:

o prevents scope creep avoiding uncontrolled feature

additions
o sets priorities distinguishing must-have and nice-to-have

features
e Aligns stakeholders:

o bridges gaps between developers, clients, and end-users of

the software
o reduces miscommunication with documented requirements

serving as a single source of truth
e |dentifies risks early:

o technical feasibility uncovers impractical demands
o regulatory compliance flags legal needs

54

e Saves time and cost:

o fixes during conception cost much less than fixes in
development and many times more than post-release fixes

e Drives design and testing:

o guides architecture determining whether to use
microservices, monoliths, or serverless
o forms test cases directly from requirements

e Ensures user-centric outcomes:

o user stories or use cases capture real-world workflows
o avoids useless features which are rarely or never used

Key Activities

The Requirements Analysis is performed by the senior members
of the team with inputs from the customer, sales department, market
surveys and domain experts in the industry.

The Requirements Analysis and elicitation consists of the
following primary activities:

e Stakeholder Interviews — Input gathering from clients, users, and
business teams
e Market Research — Competitors and industry standards analysis

Entry and Exit Criteria

The main triggering events for the software conception include:

e Business Need Identification — Recognition of a problem or
opportunity

e Strategic Initiative — Alignment with organizational goals

e Stakeholder Request — Formal request from business units

e Technological Opportunity — Leveraging new technologies

55

The deliverables which signify software readiness for the next
stage depend on the project management approach and may include:

e Business requirements document — BRD — a high level
business goals specification which elicits a set of business
functionalities that the software needs to meet in order to
succeed

e Software requirements specification — SRS — the document to
clearly define and record the software requirements and get
them approved by the customer or the market analysts

e Functional requirements document — FRD — the specification
which includes detailed system behaviors

e User stories and Use cases — the documents to describe
features from an end-user perspective

Software requirements specification is commonly treated as the
key document of the software Conception stage.

56

3.2. Software Planning Stage

Software Planning is the stage where the project's vision, scope,

and Feasibility are formally defined before any development begins.

This stage sets the trajectory for the entire project, ensuring

alignment between stakeholders, realistic expectations, and a clear
roadmap for execution.

Primary Goals

The primary goals of the Planning stage include:

Defining project scope — what will and won’t be built
Assessing feasibility — technical, economic, operational
Estimating costs, timelines, and resources

Identifying risks and mitigation strategies

Establishing stakeholder alignment

Creating a formal project plan

Key Activities

The Planning Stage consists of the following primary activities:

Feasibility Study — a structured analysis to determine if the
project is viable, which answers the following questions:

o Technical Feasibility — Can it be built with chosen
technology?

o Economic Feasibility — How expensive will the product be?

o Operational Feasibility — Will end-users adopt the solution?

o Legal Feasibility — Does it comply with regulatory rules?

Scope Definition:

o In-Scope or Out-of-Scope — Clear definition of the project
boundaries

57

o Work Breakdown Structure — WBS — Hierarchical
decomposition of deliverables

o Scope Statement — Formal agreement to prevent "scope
creep"”

Risk Assessment and Mitigation:

o Risk Identification — Potential threats definition

o Risk Analysis — Impact and likelihood evaluation

o Mitigation Strategies — Contingency planning for
high-priority risks

Resource Planning:

o Team Structure — Developers, testers, PMs and other roles
with their responsibilities

o Technology Stack — Programming languages, frameworks,
databases

o Budget Estimation — Development, testing, infrastructure,
and maintenance costs

Timeline and Milestone Planning:

o Gantt Charts and Roadmaps — Visual timelines for each
SDLC stage

o Agile Sprints — Sprint durations and backlog priorities
definition

o Critical Path Method — CPM — Identification of the tasks
that could delay the project

Selection of Development Methodology — SDLC model choice
based on the project needs

Approval and Kickoff:

o Project Charter — Authorizes the project and allocates
resources

o Stakeholder Sign-Off — Formal agreement on scope,
budget, and timeline

58

o Kickoff Meeting — Aligns all teams on objectives and
processes

The outcome of the technical Feasibility study is to define the
various technical approaches that can be followed to create the app
successfully.

The comprehension of quality assurance requirements and
identification of the risks associated with the project are the crucial
tasks of the planning stage either.

Entry and Exit Criteria

The previous stage deliverables serve as a natural trigger for the
software Planning stage to begin.

The following deliverables of the Planning stage, in its turn, serve
as a sign to exit the stage:

e Project plan — Provides overall roadmap with timelines,
milestones, and resources

e Feasibility report — Justifies project viability: technical,
financial, legal

e Risk management plan — Identifies risks and mitigation
strategies

e Scope statement — Defines project boundaries and exclusions

e Resource allocation plan — Details team structure, tools, and
budget

e Communication plan — Specifies how stakeholders will receive
updates: meetings, reports, etc.

Planning Stage Role

The Planning Stage is the cornerstone of successful software
development, transforming abstract ideas into actionable strategies.

59

By investing time in thorough planning, teams can avoid common
pitfalls, optimize resources, and deliver projects on time and within
budget.

60

3.3. Software Design Stage

Software Design is the stage to describe the desired features
and operations of the system.

The aim of the Design stage is to figure out the type of clients
and servers necessary for technical feasibility of the system.

Key Activities

The stage consists of the following primary activities:

e System architecture design
e [T infrastructure design

Software design may include:

Hierarchy diagrams

Screen layouts for user interfaces
Entity-relationship diagrams — ERD
Process diagrams

Data dictionaries

Business rules

Pseudo code

— and other necessary insights gathered under the Software
design specification.

Primary Goals

The Design stage has to describe a system as a collection of
modules — or subsystems — according to requirements identified in
the approved Software requirements specification.

Software design is to clearly define all architectural modules of
the product along with its communication and data flow
representation with the external and third party modules.

Exit Criteria

The completed Software Design Specification is the main exit
criterion during the software Design stage.

Software design specification — SDS — is the representation of
software design dedicated to store the design information, address
various concerns, and to communicate the collected data to the design
stakeholders.

The Software design specification often called:

e Software design description
e Software design document
e just a Design document

— includes, as a rule, an Architecture Diagram with reference to
the smaller pieces of design.

62

3.4. Software Development Stage

Software Development is the stage where abstract designs and

requirements are transformed into Functional, executable code.

The primary objective of the Development stage is to translate

detailed design specifications into a working software product through
systematic programming, while ensuring code quality, maintainability,

and alignment with requirements.

The Development stage includes following primary components

to be evolved:

e Code
e Databases
e Infrastructure

Key Activities
The primary Development stage activities should usually include:

Coding or Programming — Writing source code in chosen
programming languages — Java, Python, C#, JavaScript, etc

Unit Testing — Developers test individual components, called
modules, to ensure they work correctly in isolation

Code Review — Peer examination of code to improve quality,
share knowledge, and detect defects early

Version Control — Managing code changes using systems like
Git, SVN, or Mercurial

Integration — Combining individual software modules into a
complete system

63

The supplementary Development stage activities may also

include:

Database Implementation — Creating and populating databases
according to design specs

API Development — Building internal and external interfaces

Configuration Management — Managing environment-specific
settings and parameters

Debugging — Identifying and fixing code-level defects

Software and hardware are to be purchased and installed during

this stage either.

Inputs and Outputs

The developers base their work on the following inputs:

Detailed Design Documents — Technical specs, database
schemas, API contracts

UI/UX Designs — Wireframes, mockups, style guides

Architecture Diagrams — System components and their
interactions

Development Environment Setup — Servers, IDEs, tools
The main deliverables of Development stage usually include:

Source Code — Version-controlled, documented codebase

Unit Test Cases and Results — Automated tests with pass/fail
reports

Technical Documentation — Code comments, API
documentation

Build Artifacts — Executable files, packages, containers

64

Programming languages

During the Development stage the programming language — PL

—is chosen according to the type of the software developed.

To generate the code, developers must also follow the coding

guidelines defined by their organization and such programming tools
like compilers, interpreters, and debuggers.

Exit Criteria

The Development stage has its distinct definition of done:

All Features implemented according to specifications

Unit tests written and passing with the target coverage met
Code review completed for all changes

Integration testing successful

Technical documentation updated

Ready for the upcoming Testing stage

65

3.5. Software Testing Stage

Software Testing is the stage dedicated to systematically
evaluate and validate that a software meets specified requirements,
functions correctly, and delivers a quality user experience.

Testing activities are mostly involved in all stages of the Software
development life cycle.

Testing stage, however, refers to the product testing only.

The Software Testing stage serves as a primary Quality Gate
before release to production as the defects are searched and managed
until the product reaches the quality conditions defined in the
Software requirements specification.

Key Activities

During the Testing stage, all pieces of code are integrated and
deployed in the dedicated environment for the QA engineers to check
the software for errors, flaws, and defects and to verify it functions as
expected.

Testing stage includes the following primary activities:

e Test Planning and Design:

o Test Strategy Development — Overall approach and
objectives definition

o Test Case Creation — Detailed test scenarios with steps and
expected results design

o Test Data Preparation — Test datasets creation and
management

o Test Environment Setup — Hardware, software, and
networks configuration

66

e Test Execution and Evaluation:

o Test Case Execution — Test runs according to created test
plans

o Defect Reporting — Identified issues being logged, tracked,
and managed

o Results Analysis — Outcomes against expected results
evaluation

o Regression Testing — Verification that new changes don't
break existing functionality

e Test Reporting and Closure:

o Test Summary Reports — Testing activities and outcomes
documentation

o Metrics Collection — Test coverage, defect density, etc data
gathering

o Exit Criteria Evaluation — Software is ready for release
estimation

Testing Metrics and Measurements

Software testing metrics are quantitative measures used to
evaluate the effectiveness, efficiency, progress, and quality of the
testing process.

They provide data-driven insights to make informed decisions,
identify improvement areas, and assess testing performance against
objectives:

e Test Coverage — Percent of requirements covered by test cases
e Defect Density — Number of defects per size or metric

e Test Case Effectiveness — Percent of defects found by test cases
e Defect Leakage — Defects found post-release vs during testing

67

Entry and Exit Criteria

Entry Criteria define when Testing stage can begin:

Requirements are stable and approved
Development is substantially complete
Test environment is ready

Test cases are prepared and reviewed

Exit Criteria determine when Testing stage is to conclude:

All critical and major defects are resolved

Test coverage targets are met

Performance and security benchmarks are achieved
Stakeholder approval obtained

Testing Stage Role

Testing is the crucial part of software development life cycle
which can save a lot of rework, time, and money.

To provide quality software, an organization must perform
testing in a systematic way.

68

3.6. Software Deployment Stage

Software Deployment is the stage where the validated
application is released and made operational in the production
environment enabling end-users to access and use the system.

The Deployment stage, also called:

e Delivery stage
e Implementation stage
e Installation stage

— represents the transition from development to operational
use in the appropriate market.

Key Activities
The Deployment stage commonly includes following key
activities:
e Pre-Deployment Preparation:

o Deployment Planning — Create detailed rollout strategy,
schedule, and rollback plans

o Environment Setup — Configure servers, databases,
networks, and security settings

o Final Verification — Conduct smoke tests and sanity checks
in production-like staging

o Backup Creation — Backup existing systems and data
before deployment

o Stakeholder Communication — Notify users, support
teams, and stakeholders about upcoming changes

69

e Deployment Execution:

@)

@)

(@)

(@)

Package Deployment — Install application binaries,
libraries, and dependencies

Database Migration — Execute SQL scripts, data transfers,
and schema updates

Configuration Application — Set environment-specific
parameters and settings

Integration Activation — Enable connections to external
systems and Application program interfaces, APIs

Service Initialization — Start application services and
background processes

e Post-Deployment Validation:

(@)

@)

(@)

Health Checks — Verify all services are running correctly

Functional Testing — Confirm critical business functions
work in production

Performance Validation — Ensure response times meet
Service Level Agreement, SLA, requirements

User Access Testing — Verify authentication and
authorization mechanisms

Monitoring Setup — Configure alerts, logs, and
performance monitoring

Deployment Strategies

The Deployment strategies include:

e Traditional approaches:

(@)

Big-Bang Deployment — Complete system replacement at
once

70

Parallel Deployment — Old and new systems run
simultaneously

Incremental Deployment — Roll out by modules, regions, or
user groups

e Modern — Continuous Deployment — approaches:

o Blue-Green Deployment — Two identical environments to

switch traffic between them

Canary Release — Gradually expose new version to small
user subset

Feature Flags — Deploy code with features toggled off to
enable them gradually

Rolling Deployment — Incrementally update instances
while maintaining service

Entry and Exit Criteria

The prerequisites for Deployment to begin are as follows:

All testing stages completed successfully
Stakeholder approval obtained — business sign-off
Production environment prepared and validated
Rollback plan documented and tested

User documentation and training completed

The Deployment completion prerequisites are as follows:

Application successfully running in production
All integration points functioning correctly
Performance benchmarks met

Monitoring and alerting operational

Support teams trained and ready
Post-deployment review conducted

71

3.7. Software Maintenance Stage

Software Maintenance is the stage for adjustments,
amendments, and enhancements designated to keep software
updated, operable, and performant after its initial deployment.

Key Objectives

The primary goal of the Maintenance Stage is to recurrently
update and upgrade software to adapt it for the future challenges.

As a whole, Maintenance is mostly aimed to:

e Correct Issues — Identify and fix bugs discovered in production

e Adapt to Changes — Modify software to work in changing
environments

e Enhance Functionality — Add new features and improve existing
capabilities

e Prevent Degradation — Optimize performance and address
technical debt

e Ensure Continuity — Maintain compatibility with evolving
platforms and standards

Key Activities

The Maintenance stage activities may be divided into the
following categories:

e Corrective Maintenance:
o Defect Resolution — Fix bugs and errors reported by users

o Emergency Fixes — Address critical issues affecting system
availability

o Patch Management — Deploy small, focused updates

72

e Adaptive Maintenance:

o Platform Updates — Adapt to new operating systems,
hardware, or cloud platforms

o Third-Party Integration — Maintain compatibility with
external systems

o Regulatory Compliance — Address legal and regulatory
requirements

e Perfective Maintenance:

o Performance Optimization — Improve speed, efficiency,
and resource usage

o Usability Enhancements — Improve user interface and
experience

o Feature Additions — Implement new functionality based on
user feedback

e Preventive Maintenance:

o Code Refactoring — Restructure code without changing
functionality

o Technical Debt Reduction — Address shortcuts taken
during development

o Documentation Updates — Keep documentation current

with system changes

Maintenance Models

Maintenance models may be divided into the following groups:

e Traditional Models:

o Quick-Fix Model — Immediate repairs without detailed
analysis

73

o Iterative Enhancement — Cyclical improvement through
analysis, redesign

o Reuse-Oriented — Leverage existing components for
maintenance

e Modern Approaches:

o Agile Maintenance — Regular maintenance sprints with
user feedback

o DevOps Maintenance — Integrated development and
operations teams

o Al-Driven Maintenance — Predictive analytics for issue
prevention

Maintenance Stage Role

Software Maintenance is not merely about Fixing bugs but
encompasses a strategic, ongoing process of keeping software
valuable, secure, and aligned with business needs.

The most successful organizations treat maintenance as a
strategic investment rather than a necessary cost.

Effective maintenance requires balancing reactive support with
proactive improvement, ensuring that software continues to deliver
value throughout its lifecycle.

Maintenance is not the final stage but is a soft return to the
Conception stage with the intent of further enhancements on the next
level of the Software development life cycle.

74

3.8. SDLC Models

Software Development Life Cycle models are shortly referred to
as Software Development Process Models.

Software Development Process Model — SDPM —is a
structured framework that defines the sequence of activities, tasks,
and workflows for developing software products.

SDPM provides a systematic approach to transforming user
requirements into functional software while managing constraints like
time, cost, and quality.

Each SDPM follows a series of steps unique to its type in order to
ensure the success of the software development flow.

SDPM Approaches

All SDPMs may be classified into two big categories according to
the development approaches used:

e Predictive
e Adaptive

Predictive SDPMs

Predictive SDPMs — or Plan-Driven SDPMs — are the models
which assume that requirements can be Fully defined at the beginning
of the project and will remain relatively stable during development.

They focus on analyzing and planning the future in detail and
cater fFor known risks. In the extremes, a predictive team can report
exactly what features and tasks are planned for the entire length of
the development process.

Predictive models rely on effective early-stage analysis and if the
stage fails, the project may face difficulties while changing direction.

75

Adaptive SDPMs

Adaptive SDPMs — or Value-Driven SDPMs — are the models
which recognize that requirements evolve during development and
emphasize flexibility, collaboration, and continuous improvement.

They Focus on adapting quickly to changing realities — when the
needs of a project change, an adaptive team changes as well.

An adaptive team has difficulty describing exactly what will
happen in the future — the further away a date is, the more vague an
adaptive model is about what will happen on that date.

76

77

4. Predictive SDPMs

As the name suggests, Predictive SDPM assumes one can predict
the complete workflow.

It involves Fully understanding the final product and determining
the process for delivering it.

In this Form of project life cycle, one determines the cost, scope,
and timeline in the early stages of the project.

Benefits

The main benefits of Predictive SDPMs are as follows:

e |tis easy to understand and follow as each stage is initiated after
the previous one is completed

e The laid down instructions and concise workflow makes it easier
for the developers to work within a specified budget and
timeframe

e If everything goes as planned it enables organizations to assume
the expected project budget and timelines

e Each stage has specific timelines and deliverables which makes it
easier for teams to operate and monitor the entire project

e The main concern of a predictive approach is to develop and
maintain the specifications of the final product

This makes it ideal for projects where all the requirements are
defined and well understood with a clear vision of the Final product.

Within the Predictive approach, there are minimal expected
changes as the work is already predicted and well-known.

The team has a clear idea of exactly where the project is heading
and how to follow the sequence.

78

Drawbacks

The main drawbacks of the Predictive approach are as follows:

e Working software is produced at a later stage, which leads to
delayed identification of bugs and vulnerabilities in the
application

e Organizations often have to bear additional costs of delayed
applications if bugs are discovered in the testing stage of the
project

e Complex projects are poorly manageable: it is not suitable for
dynamic projects that entail flexible requirements or uncertainty
in the end product

To sum up, a predictive approach can be extremely rigid,
requiring developers to maintain strict and rigorous standards
throughout the life cycle.

Since the sequence of the work is already predetermined, any
subsequent changes can be very costly and time-consuming.

Predictive models

Below are the most important predictive Software Development
Process Models:

Big Bang Model
Waterfall Model
Incremental Model
Iterative Model
Spiral Model
V-Model

79

4.1. Bing Bang Model

Big Bang Model is a process of software development focusing
on all types of resources in software development and coding, with no
or very little planning.

The requirements are understood and implemented when they

come.

Key Characteristics

The Big Bang Model is an SDPM following no specific process or
procedure and there is very little planning required.

The development starts with the money and efforts required as
the input, and the software developed — as the output.

Even the customer may not be sure about his requirements and
they are implemented on the fly without much analysis.

Usually the Big Bang Model is followed for small projects where

the development teams are very small.

Key Activities

The Big Bang Model focuses all the possible resources on the
software development, with very little or no planning.

The requirements are understood and implemented as they
appear; any changes required may or may not need to revamp the
complete software.

This model is ideal for small projects with one or two developers
working together and is also useful for academic or practice projects.

It is also an ideal model for the product where requirements are
not well understood and the final release date is not given.

80

Idea/Requirement Resources Code Writing Testing

Deployment

Big Bang
Development

Outcome
Evaluation

Successful Product?

I ™

Working Software Failed Project

Bing Bang Model

Benefits

The Big Bang Model is:

Simple — Requires very little or no planning
Manageable — Requires no formal procedure
Affordable — requires very few resources
Flexible — Requires lesser qualification

To conclude, the Big Bang model is ideal for repetitive or small

projects with minimum risks.

81

Drawbacks

The main Drawbacks of the Big Bang Model are as follows:

There are very high risk and uncertainty

It excludes complex and object-oriented projects

It rejects long and ongoing projects

It may become very expensive if requirements are misunderstood

So, the Big Bang Model is of a very high risk as misunderstood or
changed requirements may lead to complete reversal or scrapping of
the project.

82

4.2. Waterfall Model

Waterfall Model is a process of software development that
divides the whole software development life cycle into various stages.

The Waterfall SDPM was the First model to be introduced in 1970
by Winston Royce and is also referred to as a Linear-sequential SDPM.

Key Activities

Waterfall model is a sequential SDPM that divides software
development into pre-defined stages.

Each stage is designed for a specific activity and must be
completed before the next stage can begin with no overlap between
the stages.

Applicability

Every software is different and requires a suitable SDPM to be
followed based on the internal and external factors.

Some situations where the use of Waterfall Model is most
appropriate are:

Requirements are thoroughly documented, clear, and fixed
Technologies and tools involved are familiar and consistent
Experienced resources are available and ample

Application is simple and compact

Software environment is stable

Project term is concise

83

Requirements Gathering

l

System Design

|

Implementation

|

Testing

l

Deployment

i

Maintenance

Waterfall Model

Benefits

The Waterfall model is the earliest SDPM that was used for
software development, it is very simple to understand and use.

Some of the major advantages of the Waterfall Model are as
Follows:

e Clearly defined stages
e Well understood milestones

84

Easily to arrange tasks

Well documented processes
Ready to manage resources
Deliverables at every stage
One at a time stage run
Handily reviewed results

Drawbacks

The major disadvantages of the Waterfall Model are as follows:

Intensive untested documentation

e Operating software appears late in SDLC, hence, testing stage

starts too late

Project changes are unpredictable

Risk and uncertainty are of high levels

Complex or object-oriented projects are excluded
Long and ongoing projects are incapable

Projects of changing requirements are poorly managed
Project run requires environment stability support
Integration is complicated and hassled

Stage progress is difficult to measure
Technological bottlenecks are poorly identifiable
Business challenges are difficult to overwhelm

85

4.3. Incremental Model

Incremental Model is a process of software development where
requirements are broken down into multiple standalone modules of
software development life cycle.

Key Activities

Incremental SDPM may be treated as a series of waterfall cycles.

The requirements are divided into groups at the start of the
project; for each group, the Incremental model is followed to develop
software.

Process

Each release adds more functionality until all requirements are
met; every cycle serves the maintenance stage for the previous
release.

Incremental Model modifications allow the development cycles
to overlap, so that a subsequent cycle may begin before the previous
one is complete.

Iterations

Each iteration passes through the next four stages:

Requirements Analysis
Design
Coding
Testing

and each subsequent release of the system adds function to the
previous release until all designed functionality has been implemented.

86

Core Infrastructure

Requirements Analysis

A 4

Architecture Design

Core System Development

System Integration

e

\

¢

Module 1 Requirements

A 4

Module 1 Design

A 4

Module 1 Development

¥

Module 1 Testing

Increment 1 Delivery

\

y

Module 2 Requirements

A 4

Module 2 Design

A 4

Module 2 Development

¥

Module 2 Testing

Increment 2 Delivery

y

Module 3 Requirements

A 4

Module 3 Design

A 4

Module 3 Development

3

Module 3 Testing

Increment 3 Delivery

/

Increment 1: Basic tures

Increment 2: En

r

hanced Features

Final System Integration

Incremental Model

Increm 3: Advanced Features

87

Procedure

The software is put into production when the first increment is

delivered.

The first increment is often a core product where the basic

requirements are addressed, and supplementary features are added in
the next increments.

Once the core product is analyzed by the client, there is a

development for the next increment.

Model Characteristics

The main Incremental Model characteristics include:

Software development is broken down into many mini
development projects

Partial systems are successively built to produce a final total
system

e Highest priority requirement is tackled first
e Once the requirement is developed, requirement for that

increment are frozen

Applicability
Incremental Model may be used when:

Software requirements are clearly understood

Early release of a product is of significant value

There are features and goals of considerable risk
Developers are not highly skilled or trained

Software is developed by product company

Application is web based and may seamlessly be updated

88

Benefits

The main advantages of the Incremental Model are as follows:

High speed of development

High flexibility

Lower expenses

Changes are possible

Customer can respond to each building
Errors are easy to be identified

Drawbacks

Below are the main pitfalls of the Incremental Model:

farsighted planning is required

each iteration cycle is rigid enough

any unit bugfix influences all the software
bugfixes are numerous and consume a lot of time

89

4.4. lterative Model

Iterative Model — or Evolutionary Acquisition Model — is the
process of software development which starts with an implementation
of a small simple subset of requirements and iteratively enhances the
evolving versions until the complete application is implemented and
ready to be deployed.

Key Activities

The Iterative SDPM does not attempt to start with a full
specification of requirements.

Instead, development begins by specifying and implementing just
part of the software, which is then reviewed to identify further
requirements.

This process is then repeated, producing a new version of the
software at the end of each iteration of the model.

At each iteration, design modifications are made and new
functional capabilities are added.

The basic idea behind this method is to develop a system through
repeated, iterative, cycles and in smaller, incremental, portions at a
time.

Workflow

Iterative Model is a combination of iterative design and
incremental development.

During software development, more than one iteration of the
software development cycle may be in progress at the same time.

90

Iteration 1: Iteration 2: Iteration 3:

Basic Framework Enhanced Features Final Polish
Requirements Requirements Requirements
Design Design Design
Implementation Implementation Implementation
Testing Testing Testing
Deployment Deployment Deployment
r r h

Evaluation Evaluation Final Product

Iterative Model

Builds

Iterative Model implies all the requirements are divided into
various builds.

During each iteration, the module developed goes through the
requirements analysis, design, implementation, and testing stages.

Each subsequent release of the module adds a new fFunctionality
to the previous one.

91

The process continues until the complete system is ready as per
the requirement.

Testing Role

The key features of the Iterative Model are rigorous validation of
requirements, and both verification and testing of each version of the
software against those requirements within each iteration.

As the software evolves through successive cycles, tests must be
repeated and extended to verify each version of the software.

Applicability

Like other SDPMs, Iterative development has some specific
applications in the software industry.

This model is most often used in the following scenarios:

e Product requirements are clearly defined and understood

e New technologies are to be adopted by development team

e Certain functionalities or requested enhancements may evolve
during project

e Features and goals of a high risk may appear in the future

e Specificiterations' resources are to be outsourced

Benefits

The main advantage of the Iterative Model is the operating
software gained at the earliest stages of development.

The operating software, in particular, makes it easier to find
functional or design Flaws.

The flaws found early in the life cycle enable developers to save
budget while software adjustments are applied.

92

All the advantages of the Iterative Model are as follows:

Large and mission-critical projects are performable
Operating software appears early in the life cycle

Customer enjoyment, evaluation, and feedback start shortly
Every increment delivers a new software functionality

The results obtained are immediate and periodical

Each iteration serves a manageable milestone

Software development progress is measurable

Parallel development is enabled

Smaller iterations simplify testing and debugging
Requirement changes are easily governed at lesser expences
Issues, challenges, and risks found may be treated incrementally
Iterated risk analysis, identification, and resolution is steadier
High risks may be managed first

Drawbacks

The main drawback of the Iterative Model is it only fits large

software development projects: breaking a small system into further
small serviceable increments or modules is hard.

Other disadvantages of the Iterative Model are as follows:

Model may require more resources to apply

Often requirement changes keep the adoption cost high
Serious system architecture or design issues may arise
Management attention is of a greater need and complexity
Risk analysis requires highly skilled resources

Progress is highly dependent on the risk analysis stage
Increment definitions redefine the complete system

Risky level of uncertainty at the end of the project

Model is poorly suitable for smaller projects

93

4.5. Spiral Model

Spiral Model is the combination of Iterative Model with the
systematic, controlled aspects of the sequential linear development
inherent to the Waterfall Model.

In other words, the model is a conjunction of Iterative and
Waterfall Models with a distinct emphasis on risk analysis.

It allows incremental releases of the product — or Incremental
Refinement — through each iteration around the spiral.

Spirals
The Spiral SDPM includes the four stages described below.

A software project repeatedly passes through these stages in
iterations called Spirals.

Based on the customer evaluation, the software development
process enters the next iteration and subsequently follows the linear
approach to implement the feedback suggested by the customer.

The process of iterations along the spiral continues throughout
the life of the software.

1. Identification

This stage starts with gathering the business requirements in the
baseline spiral.

In the subsequent spirals, as the product matures, identification
of system, subsystem, and unit requirements are all done in this stage.

This stage also includes understanding the system requirements
by continuous communication between the customer and the system
analyst.

94

At the end of the spiral, the product is deployed in the identified
market.

2. Design

The Design stage starts with the conceptual design in the
baseline spiral and involves architectural design, logical modules
design, physical product design and the final design in the subsequent
spirals.

3. Construct or Build

The Construct stage refers to production of the actual software
product at every spiral.

In the baseline spiral, when the product is just thought of and the
design is being developed a Proof of Concept — POC — is developed in
this stage to get customer feedback.

In the subsequent spirals with higher clarity on requirements and
design details a working software model, called Build, is produced with
a version number.

These Builds are sent to the customer for feedback.

4. Evaluation and Risk Analysis

Risk Analysis includes identifying, estimating and monitoring the
technical feasibility and management risks, such as schedule slippage
and cost overrun.

After testing the Build, at the end of the Ffirst iteration, the
customer evaluates the software and provides feedback.

95

Iteration 1

Iteration 2

Iteration 3

Y Y
Risk Analysis Risk Analysis Risk Analysis
Engineering Engineering Engineering
3 h 3
Evaluation Evaluation Evaluation
Planning - Iteration 2 Planning - Iteration 3 Final Release

Spiral Mode/

Key Activities

Each stage of the Spiral Model in software engineering begins
with a design goal and ends with the client reviewing the progress.

The development process starts with a small set of requirements
and goes through each of the Waterfall Model stages.

The software engineering team adds functionality fFor the
additional requirement in every-increasing spirals until the software is
ready fFor the production stage.

Benefits

The advantage of the Spiral Model is that it allows elements of
the product to be added in when they become available or known.

This assures that there is no conflict with previous requirements
and design.

96

This method is consistent with approaches that have multiple

software builds and releases which allows making an orderly transition
to a maintenance activity.

Another positive aspect of this method is that the Spiral model

forces an early user involvement in the system development effort.

Else advantages of the Spiral model are as follows:

e Model allows extensive use of prototypes
e Fragmented prototype building simplifies the cost estimation
e Continuous repeated development streamlines the risks

management

Faster development and more regular improvements
Customers gain the system early for use and feedback
Requirement changes are easily accommodated
Requirements are gathered more accurately
Additional functionality may be shifted for a later stage
Development may be divided into smaller parts

Risky parts of software may be developed earlier

Drawbacks

The main disadvantage of the Spiral Model is that it takes a very

strict management to complete such apps and there is a risk of running
the Spiral in an indefinite loop.

The discipline and the extent of taking change requests is very

important to develop and deploy the product successfully.

Other disadvantages of the Spiral Model are as follows:

Schedule or budget discrepancies are of a high probability

A lot of intermediate stages requires excessive documentation
Model protocol should be followed strictly to smooth operation
The process and its management are more complex

Risk assessment expertise is obvious for the model

Spiral development suits best the large projects only

97

e Mismatches the smaller projects due to excessive costs
e Low risk projects misfit the model due to unnecessary complexity
e Spiral may continue indefinitely

Applicability

The Spiral Model is widely used in the software industry as it is in

sync with the natural development process of any product — learning
with maturity which involves minimum risk for the customer as well as
the development firms.

The following pointers explain the typical uses of a Spiral Model:

Project is large

Releases are to be frequent
Customer feedback is necessary
Prototype creation is possible

Risk evaluation is important

Budget constraints are weighty
Business priority changes are often
Project is of a medium or high risk
Requirements are foggy, variable, or complex
Project revision may happen any time
Significant changes are expected

98

4.6. V-Model

V-Model is an extension of the Waterfall SDPM and is based on
the association of a testing stage for each corresponding development
stage.

The model consists of Verification and Validation stages, and is
also known as Verification and Validation Model.

Key Activities

V-Model is the SDPM where process execution happensinaV
shape.

It means that every development activity has its directly
associated testing stage done in parallel in a sequential way.

This is a highly disciplined model where the next stage starts only
after completion of the previous one.

Verification Stages

There are several Verification stages in the V-Model, each of
these are explained in detail below.

1. Business Requirements Analysis

This is the first stage in the development cycle where the product
requirements are understood from the customer's perspective.

This stage involves detailed communication with the customer to
understand his expectations and exact requirements.

This is a very important activity and needs to be managed well, as
most of the customers are not sure about what exactly they need.

99

The acceptance test design planning is done at this stage as
business requirements can be used as an input for acceptance testing.

2. System Design

Once the product requirements are clear and detailed, it is time
to design the complete system.

The system design will have the understanding and detailing the
complete hardware and communication setup for the product under
development.

The system test plan is developed based on the system design.
Doing this at an earlier stage leaves more time for the actual test

execution later.

3. Architectural Design

Architectural specifications are understood and designed in this
stage.

Usually more than one technical approach is proposed and based
on the technical and financial feasibility the Final decision is taken.

The system design is broken down further into modules taking up
different functionality.

This is also referred to as High Level Design — HLD.

The data transfer and communication between the internal
modules and with the outside world — other systems — is clearly
understood and defined in this stage.

With this information, integration tests can be designed and
documented during this stage.

100

4. Module Design

At this stage, the detailed internal design for all the system
modules is specified, referred to as Low Level Design — LLD.

It is important that the design is compatible with the other
modules in the system architecture and the other external systems.

The unit tests are an essential part of any development process
and help eliminate the maximum faults and errors at a very early stage.

These unit tests can be designed at this stage based on the
internal module designs.

5. Coding Stage

The actual coding of the software modules designed during the
Design stage is taken up in the Coding stage.

The best suitable programming language is decided based on the
system and architectural requirements.

The coding is performed based on the coding guidelines and
standards.

The code goes through numerous code reviews and is optimized
for best performance before the final build is checked into the
repository.

Validation Stages

The different Validation stages in a V-Model are explained in
detail below.

101

Business Requirements

4

System Requirements

4

Architecture Design

L

Module Design

[

Coding

\

Unit Testing

\

Integration Testing

N

System Testing

N

Acceptance Testing

V-Model

102

1. Unit Testing

Unit tests designed in the module Design stage are executed on
the code during this validation stage.

Unit testing is the testing at code level and helps eliminate bugs
at an early stage, though all defects cannot be uncovered by unit
testing.

2. Integration Testing

Integration testing is associated with the Architectural design
stage.

Integration tests are performed to test the coexistence and

communication of the internal modules within the system.

3. System Testing

System testing is directly associated with the System design
stage.

System tests check the entire system Functionality and the
communication of the system under development with external
systems.

Most of the software and hardware compatibility issues can be
uncovered during this system test execution.

4. Acceptance Testing

Acceptance testing is associated with the Business requirements
analysis stage and involves testing the product in a user environment.

Acceptance tests uncover the compatibility issues with the other
systems available in the user environment.

103

It also discovers the non-functional issues such as load and

performance defects in the actual user environment.

Benefits

The main advantage of the V-Model is that it is very easy to

understand and apply.

The simplicity of this model also makes it easier to manage.
All advantages of the V-Model are as follows:

Simple and easy to understand and apply

Easy to manage due to the rigidity of the model

Each stage has specific deliverables and a review process

Allows smaller projects where requirements are well understood
Stages are completed one at a time

Drawbacks

V-Model is not flexible to changes, which are common in a

dynamic world, and the disadvantage is the greatest one.

The case requirement changes happen, it is very expensive to

implement them.

All disadvantages of the V-Model are as follows:

risk and uncertainty are of a high level

complex and object-oriented projects are prevented

long and ongoing projects are excluded

projects where requirements are at a middle or high risk of
changing are rejected

at testing stage, the application is difficult to go back and change
a functionality

working software is absent until the closure of the life cycle

104

Applicability

V-Model applicability greatly resembles the one of the Waterfall
model, as both models are of the sequential type.

Requirements have to be very clear before the project starts,
because it is usually expensive to go back and make changes.

This model is often used in the medical development field, a
strictly disciplined domain.

The Following pointers are some of the most suitable scenarios to
use the V-Model application:

e requirements are well defined, clearly documented and fixed

e product definition is stable

e technology is not dynamic and is well understood by the project
team

e there are no ambiguous or undefined requirements

e the projectis shortin time

105

106

9. Adaptive SDPMs

Adaptive SDPMs are the models which recognize that
requirements evolve during development and emphasize flexibility,
collaboration, and continuous improvement.

Adaptive SDPM have a mix of incremental and iterative
development.

It involves adding fFeatures incrementally and making changes
and refinements according to the feedback.

In other words, the work can easily adapt to the changing

requirements based on new feedback received from the client.

Key Element

A key element of an Adaptive SDPM is that while it defines
certain milestones throughout the SDLC, it also allows Flexibility to
achieve them.

Adaptive SDPM focuses on achieving the desired end goal by
quickly adapting the dynamic business requirements.

It puts more focus on the present requirement and leaves room

for future scope of the project.

Agility

All adaptive SDPMs are collectively referred to as Agile methods,

after the Agile Manifesto was published in 2001.

The Agile thought had started early in the software development

and got popular due to its flexibility and adaptability.

107

Agile Methods

Following are the most popular Agile Methods:

Rapid application development — RAD
Rapid prototyping

Dynamic systems development
Rational unified process

Scrum

Crystal Clear

Extreme programming

Feature driven development

Scrum is by far the most popular and de facto standard Agile
development method, most likely because it's easy to implement and
maintain.

108

5.1. Agile Methodology

Agile methodology is a combination of iterative and incremental

process models with focus on process adaptability and customer
satisfaction by rapid delivery of working software products.

Activities
Agile methods break the product into small incremental builds.
These builds are provided in iterations.
Each iteration typically lasts from about one to three weeks.

Every iteration involves cross functional teams working

simultaneously on various areas like:

Planning
Requirements analysis
Design

Coding

Unit testing
Acceptance testing

At the end of the iteration, a working product is displayed to the

customer and important stakeholders.

Time Boxes

Agile methodology believes that every project needs to be

handled differently and the existing methods need to be tailored to
best suit the project requirements.

In Agile, the tasks are divided into Time Boxes — small frames of

time — to deliver specific features for a release.

109

Iterative approach is taken and working software build is
delivered after each iteration.

Each build is incremental in terms of features.

The final build holds all the features required by the customer.

110

0.2. Agile Methods

Agile methods are being widely accepted in the software world.

However, these methods may not always be suitable for all products.

Below are some benefits and drawbacks of the Agile

methodology.

Benefits

The main advantages of the Agile methodology are as follows:

Convenient teamwork and cross training

Fast working solutions development and demonstration
Minimal resource requirements

Ready for fFixed or changing requirements

Steadily changed environments adoption

Concurrent development and delivery enabled
Minimum of planning, rules, and documentation

Real Flexibility for developers and simple management

Drawbacks

The main disadvantages of the Agile methodology are as follows:

Poor handling for complex dependencies

Sustainability, maintainability, and extensibility are at high risks
Overall plan, leader, and Project manager are obvious

Strict delivery deadlines for adjustments and added functionality
Heavy dependency on customer interaction

Challenging technology transfer and high individual dependency
due to the documentation deficiency

111

0.3. Agile Manifesto

Agile Touchstones

Following are the touchstones of Agile Manifesto:

Individuals and interactions over Processes and tools
Working software over Comprehensive documentation
Customer collaboration over Contract negotiation
Responding to change over Following a plan

Agile Principles
Following are the principles behind the Agile Manifesto:

Our highest priority is to satisfy the customer through early and
continuous delivery of valuable software
Welcome changing requirements, even late in development

e Agile processes harness change for the customer's competitive

advantage

Deliver working software frequently, from a couple of weeks to a
couple of months, with a preference to the shorter timescale
Business people and developers must work together daily
throughout the project

Build projects around motivated individuals. Give them the
environment and support they need, and trust them to get the
job done

The most efficient and effective method of conveying
information to and within a development team is face-to-face
conversation

e Working software is the primary measure of progress
e Agile processes promote sustainable development. The sponsors

developers, and users should be able to maintain a constant pace
indefinitely

112

Continuous attention to technical excellence and good design
enhances agility

Simplicity — the art of maximizing the amount of work not done
— is essential

The best architectures, requirements, and designs emerge from
self-organizing teams

At reqgular intervals, the team reflects on how to become more
effective, then tunes and adjusts its behavior accordingly.

113

9.4. Rapid Application
Development

Rapid application development — RAD — is the software
development method based on prototyping and iterative development
with no specific planning involved.

Key Activities

Rapid Application Development focuses on:

e Gathering customer requirements through workshops or focus
groups

e Early testing of the prototypes by the customer using iterative

concept

Reuse of the existing prototypes — components

Continuous integration and rapid delivery

Routine operations automation

Visual prototype programming

Key Objectives

Rapid application development is a software development
methodology that uses minimal planning in favor of rapid prototyping.

A Prototype is a working model that is functionally equivalent to
a component of the product.

In the RAD model, the functional modules are developed in
parallel as prototypes and are integrated to make the complete
product for faster product delivery.

Since there is no detailed preplanning, it makes it easier to
incorporate the changes within the development process.

114

Workflow

RAD projects follow an iterative and incremental model and have

small teams of developers, domain experts, customer representatives
and other IT resources working progressively on their component or
prototype.

The most important aspect for this model to be successful is to

make sure that the prototypes developed are reusable.

Benefits

The main advantages of the RAD Model are as follows:

Requirement changes may be accommodated

Progress can be measured

Iteration time can be short with use of powerful rad tools
Productivity with Fewer people in a short time

reduced development time

Increases reusability of components

Quick initial reviews occur encouraging customer feedback
Integration from very beginning solves a lot of integration issues

Drawbacks

The main disadvantages of the RAD Model are as follows:

Dependency on technically strong team members for identifying
business requirements

Only system that can be modularized can be built using RAD
requires highly skilled developers and designers

High dependency on modelling skills

Inapplicable to cheaper projects as cost of modelling and
automated code generation is very high

Management complexity is more suitable For systems that are
component based and scalable

115

e Requires user involvement throughout the life cycle
e Suitable for projects requiring shorter development times

Applicability

The RAD model can be applied successfully to the projects in
which clear modularization is possible.

If the project cannot be broken into modules, RAD may fail.

The following pointers describe the typical scenarios where RAD
can be used:

System can be modularized to be delivered incrementally
There is a high availability of designers for modelling

Budget permits use of automated code generating tools
Domain experts are available with relevant business knowledge
Requirements changes and working prototypes are to be
presented to customer in small iterations of 2-3 months

RAD model enables rapid delivery as it reduces the overall
development time due to the reusability of the components and
parallel development.

RAD works well only if highly skilled engineers are available and
the customer is also committed to achieve the targeted prototype in
the given time frame.

If there is commitment lacking on either side the model may fail.

116

0.9. Rapid Prototyping

Rapid Prototyping refers to the building of software prototypes
which display the Functionality of the developed application.

The prototype, though, may not actually hold the exact logic of
the original software.

Rapid Prototyping becomes very popular, as it enables the team
to understand customer requirements at an early stage of
development.

It also helps software designers and developers to get customer
feedback and understand what exactly is expected from the product
built.

Key Activities

Prototype is a working model of software with some limited
functionality.

The Prototype does not always hold the exact logic used in the
actual software application and is an extra effort to be considered
under effort estimation.

Prototyping is used to allow the users evaluate developer
proposals and try them out before implementation.

It also helps understand the requirements which are user specific
and may not have been considered by the developer during product
design.

Key Objectives

Software prototyping should only be used when the efforts
spent in building the prototype add considerable value to the final
software developed.

117

Benefits

The main advantages of the Rapid Prototyping are as follows:

e Increased user involvement in the product even before its
implementation

e Since a working model of the system is displayed, the users get a
better understanding of the system being developed

e Reduces time and cost as the defects can be detected much
earlier

e Quicker user feedback is available leading to better solutions

e Missing functionality, confusing or difficult functions can be
identified easily

Drawbacks

The main disadvantages of the Rapid Prototyping are as follows:

e Risk of insufficient requirements analysis owing to too much
dependency on the prototype

e Users may get confused in the prototypes and actual systems

e Practically, this methodology may increase the complexity of the
system as scope of the system may expand beyond original plans

e Developers may try to reuse the existing prototypes to build the
actual system, even when it is not technically feasible

e The effort invested in building prototypes may be too much ifitis
not monitored properly

Applicability

Rapid Prototyping is of the greatest value for development of
the software having high levels of user interactions, such as online
applications.

Systems which need users to fill out forms or go through various
screens before data is processed can use prototyping very effectively

118

to give the exact look and feel even before the actual software is
developed.

Software that involves too much data processing and most of the
functionality is internal with very little user interface does not usually
benefit from prototyping.

Prototype development could be an extra overhead in such
projects and may need a lot of extra effort.

119

5.6. Scrum

Scrum is an Agile — lightweight, iterative, and incremental —
framework for developing, delivering, and sustaining complex
products.

It is designed for teams of ten or fewer members, who break
their work into iterations, called sprints, no longer than one month and
most commonly two weeks.

The Scrum team tracks progress in 15-minute time-boxed daily
meetings, called Daily Scrums.

At the end of the Sprint, the team holds Sprint Review, to
demonstrate the work done, and Sprint Retrospective to improve
continuously.

Scrum Principles

Scrum framework enables teams to self-organize by encouraging
physical colocation or close online collaboration of all team members,
as well as daily Face-to-face communication among all team members
and disciplines involved.

A key principle of Scrum is the dual recognition that customers
may change their minds about what they want or need — producing
requirements volatility — and that there will be unpredictable
challenges for which a predictive approach is not suited.

As such, Scrum adopts an evidence-based empirical approach -
accepting that the problem cannot be fully understood or defined up
front, and instead Focusing on how to maximize the team's ability to
deliver quickly, to respond to emerging requirements, and to adapt to
evolving technologies and changes in market conditions.

120

121

6. Scrum Framework

Scrum is a feedback-driven empirical approach underpinned by
transparency, inspection, and adaptation.

Transparency means that every process, workflow, or progress
within the Scrum framework should be visible to those responsible for
the outcome.

Frequent Inspection of the product being developed and how
well each one performs is the best way to make processes visible for
the whole team.

Adaptation, based on the Frequent Inspection, is the ability of
the team to spot the initial goal deviations and to adjust the
development process.

Scrum Values

Scrum framework emphasizes Five core values that guide the
work, actions, and behavior of Scrum Team members:

e Focus — keeps the Team focused on its goal avoiding other work

e Respect — makes members respecting each other as skilled
professionals

e Openness — agrees the Team and Stakeholders to be open about
their job

e Commitment — helps every member to commit in achieving the
common goal

e Courage — allows the Team to do right things facing the tough
issues

122

6.1. Scrum Team

The Scrum Team is the fundamental unit of the Scrum
framework — a cohesive group of professionals working together to
deliver valuable, high-quality outcomes through collaboration and
iterative progress.

Scrum Team Structure

PRODUCT

DEVELOPMENT
TEAM

123

A Scrum Team consists of three key roles, each with distinct
responsibilities:

e Product Owner — Represents stakeholders, defines priorities,
and ensures the team delivers maximum business value

e Scrum Master — Acts as a facilitator, removing obstacles and
fostering an environment where the team can work efficiently

e Development Team — A self-organizing, cross-functional group
of professionals who design, build, and test the product
increment

Core Principles

Scrum thrives on transparency, collaboration, and continuous
improvement.

To succeed, the team must:

e Align on a shared goal — Every member contributes toward a
unified objective

e Uphold Scrum values — Commitment, courage, focus, openness,
and respect

e Communicate frequently — Daily interactions (e.g., stand-ups,
sprint reviews) ensure alignment and adaptability

By Fostering a culture of trust, accountability, and adaptability,
the Scrum Team maximizes efficiency and delivers meaningful results
in each sprint.

124

6.2. Product Owner

Product Owner — PO — is the representative of the product
Stakeholders and a Customer responsible for the positive business
results.

Product Owner defines the software functionalities in
customer-centric terms — typically, User Stories — and prioritizes them
according to their importance for the software.

A Scrum Team should have only one Product owner, although a
Product owner could support more than one team.

Key Activities

Product Owner is focused on the business side of the software
development consolidating efforts of the Stakeholders and the Scrum
team.

Product Owner does not indicate how the Scrum team reaches a
technical goal, but rather seeks accordance amid the Scrum team
members.

The role is crucial and requires a deep understanding of both
sides, Business and Developers, within the Scrum team.

Key Objectives

A good product owner should be able to communicate what the
business needs, select the best ways to achieve their objectives, and
convey the message to all stakeholders including the developers using
technical language, as required.

The Product Owner uses Scrum's empirical tools to manage
highly complex work, while controlling risk and achieving value.

125

Key Responsibilities

Communication is a core responsibility of the product owner.

The ability to convey priorities and empathize with team
members and stakeholders is vital to steer product development in the
right direction.

The product owner role bridges the communication gap between
the team and its stakeholders, serving as a proxy for stakeholders to
the team and as a team representative to the overall stakeholder
community.

Tasks

As the face of the team to the stakeholders, the following are
some of the communication tasks of the product owner to the
stakeholders:

Define and announce releases

Communicate delivery and team status

Share progress during governance meetings

Share significant risks, impediments, dependencies, and
assumptions — RIDA — with stakeholders

Negotiate priorities, scope, funding, and schedule

e Ensure that the software outlook is visible, transparent, and clear

126

6.3. Scrum Master

Scrum Master is the person accountable for removing the
holdbacks on the way of the Team to achieve the development goals
and deliverables.

Scrum Master ensures the team follows the Scrum framework
principles Facilitating the key sessions and encouraging the team to
improve.

Key Responsibilities

The core responsibilities of a Scrum master include:

Product Owner assistance

Team Support and Empowerment
Coaching the Scrum Team
Creating High-Value Increments
Facilitating Scrum Events

Scrum Master may not have people management responsibilities,
so the role of Product owner should never be combined with that of
the Scrum master.

127

6.4. Development Team

Development Team is the unit to carry out all the tasks required
to build increments of valuable output.

Team members are referred to as Developers.

The term Developer refers to anyone who plays a role in the
development and support of the system or product, and may include:

Analysts
Architects

Data specialists
Designers
Developers
Researchers
QA engineers

— and others.

Team Organization

The Development Team is self-organizing.

While no work should come to the team except through the
Product owner and the Scrum master should protect the team from
too much distraction, the team should still be encouraged to interact
directly with Stakeholders and Customers to gain the maximum of
understanding and immediacy of feedback.

128

6.5. Scrum Artifacts

Scrum Artifacts — also spelled as Artefacts — are information
that a Scrum Team and Stakeholders use to detail the software being
developed, actions to produce it, and the actions performed during the
project.

In the Scrum framework, there are three essential Artifacts that
play a crucial role in ensuring transparency and facilitating effective
collaboration:

e Product backlog
e Sprint backlog
e Increment

These Artifacts provide transparency, guide decision-making, and
serve as a basis for adaptation within the Scrum team and its
Stakeholders.

Product Backlog

Product Backlog is a dynamic list of items that represent the
work needed to build a product.

It includes new features, enhancements, bug fixes, tasks, and
other work requirements.

The Product Owner is responsible for maintaining and prioritizing
the items in the backlog.

The commitment associated with the Product Backlog is the
Product Goal.

Sprint Backlog

Sprint Backlog is a subset of the Product Backlog items selected
for development during a specific time-boxed period called Sprint.

129

The Development team collaboratively decides which items to
include in the Sprint Backlog.

The commitment associated with the Sprint Backlog is the Sprint

Goal.

Increment

Increment is the sum of the work completed during a Sprint that
adds value to the product.

It includes the Features, enhancements, and bug fixes that were
developed and meet the Definition of Done.

The commitment associated with the Increment is the Definition
of Done.

130

6.6. Product Backlog

Product backlog is a breakdown of work to be done and contains
an ordered list of product requirements that a Scrum Team maintains
for a product.

The requirements define features, bug fixes, non-functional
requirements, etc — whatever must be done to deliver a viable
product.

Product backlog and the business value of each Product Backlog
Item — PBI —is the responsibility of the Product Owner.

The product owner prioritizes PBIs based on the following
considerations:

Risk

Business value
Item's dependencies
Iltem's size

Date needed

Key Activities

Typically, the Product Owner and the Scrum Team work together
to develop the breakdown of work. The Product Backlog:

e Captures requests to modify a product — including new features,
replacing old features, removing features, and fixing issues

e Ensures the developers have work that maximizes business
benefit of the product

Product Backlog evolves as new information surfaces about the
product and about its customers, and so later sprints may address new
work.

131

6.7. Sprint Backlog

The Sprint Backlog is the list of work the team must address
during the next sprint.

The list is derived by the Scrum Team progressively selecting
Product Backlog items in priority order from the top of the Product
Backlog.

Tasks

The Product Backlog items may be broken down into tasks by the
developers.

Tasks on the Sprint Backlog are never assigned — or pushed — to
team members by someone else.

Rather team members sign up for — or pull — tasks as needed
according to the Backlog priority and their own skills and capacity.

This promotes self-organization of the developers.

Task Board

The Sprint Backlog is the property of the developers, and all
included estimates are provided by the developers.

Often an accompanying Task Board is used to see and change the
state of the tasks of the current sprint, like To Do, In Progress and
Done.

132

Re-Prioritization

Once a Sprint Backlog is decided, no additional work can be
added to the Sprint Backlog except by the Team.

Once a Sprint has been delivered, the Product Backlog is
analyzed and re-prioritized if necessary, and the next set of
functionality is selected for the next Sprint.

133

6.8. Increment

Increment is the potentially releasable output of the Sprint that
meets the Sprint goal.

Key Activities

Increment is Formed from all the completed Sprint Backlog items,
integrated with the work of all previous Sprints.

Increment must be complete, according to the Scrum Team's

Definition of done — DoD.

Key Objective

Increment should be fully functioning, and in a usable condition
regardless of whether the Product Owner decides to actually deploy
and use it.

134

6.9. Scrum Events

Scrum Events — also called Ceremonies — are the main
activities that occur inside each Sprint iteration to provide structure,
encourage collaboration, and drive continuous improvement within the
Scrum process.

In the Scrum framework, there are five essential Events that play
a crucial role in ensuring transparency, adaptation, and effective
collaboration:

e Sprint
e Sprint Planning

e Daily scrum

e Sprint review

e Sprint retrospective

Sprint

Sprint is a fundamental time-boxed period when a Scrum Team
collaboratively works to achieve a specific goal.

Sprint serves as the heartbeat of Scrum, where ideas are
transformed into tangible value.

It provides a consistent and short iteration for Feedback, allowing
the team to inspect and adapt both their work processes and the items
they're working on.

Sprints have a fixed length, lasting one month or less.

Shorter Sprints generate more learning cycles and limit risk to a
smaller time frame.

135

Sprint Planning

Sprint Planning is a crucial event in the Scrum framework that
sets the stage for a productive Sprint by establishing the Sprint goal
and the way it will be completed.

Sprint Planning initiates the sprint by defining the work to be
accomplished during that Sprint and ensures that the most important
items from the Product Backlog are discussed and aligned with the
Product Goal.

Daily Scrum

Daily Scrum — also known as Daily Standup — is a short
every-day Developers' meeting to inspect the progress toward the
Sprint goal and adapt the Sprint backlog on necessity.

The aim of the Daily Scrum is to create an actionable plan for the
next day's work Facilitating the decisions and highlighting the
impediments for removal.

Sprint Review

Sprint Review is the Sprint completion event for the Scrum team
to discuss the Increment with Stakeholders and to determine the
future amendments.

Sprint Review is the meeting to showcase which Product Backlog
items have been done and which are still pending.

The Scrum Team collaborates on what to do next, providing
valuable input For subsequent Sprint Planning.

136

Sprint Retrospective

Sprint retrospective is a meeting for the Scrum Team to
estimate how the accomplished Sprint went regarding individuals,
interactions, processes, tools, and their Definition of Done.

Developers share what went well during the Sprint, the

encountered issues, and how those issues were or were not solved.

Scrum Team identifies the improvement areas to implement
enhancements and increase effectiveness during the next Sprint.

137

6.10. Sprint

Sprint — also known as Iteration or Timebox — is the basic
duration unit of development in Scrum.

The Sprint length is a length agreed and fixed in advance for each
Sprint and is normally between one week and one month — with two
weeks being the most common.

Workflow

Each Sprint starts with a Sprint Planning event that establishes a
Sprint goal and the required Product Backlog items.

The team accepts what they agree is ready and translates this
into a Sprint Backlog, with a breakdown of the work required and an
estimated forecast for the Sprint goal.

Each Sprint ends with a Sprint Review and Sprint Retrospective,
that reviews progress to show to stakeholders and identify lessons and
improvements for the next Sprints.

Emphasis

Scrum emphasizes valuable, useful output at the end of the
Sprint that is really done — the software that was fully integrated,
tested, documented, and is potentially releasable.

Sprint Planning

At the beginning of a Sprint, the Scrum Team holds a Sprint
Planning event to:

e Mutually discuss and agree on the scope of work that is intended
to be done during the Sprint

138

e Select Product Backlog items that can be completed in one Sprint

e Prepare a Sprint Backlog that includes the work needed to
complete the selected Product Backlog items

e Agree the Sprint goal and a short description they are forecasting
to deliver at the end of the Sprint

As the detailed work is elaborated, some Product Backlog items
may be split or put back into the product backlog if the team no longer
believes they can complete the required work in a single Sprint.

The maximum duration of a Sprint Planning should not exceed 8
hours for a 4 week Sprint.

139

6.11. Daily Scrum

The Daily Scrum is a daily, time-boxed event where the
Development Team synchronizes activities, inspects progress toward
the Sprint Goal, and adapts the plan for the next 24 hours.

In simple words, it's a daily team huddle to get on the same page,
not a detailed status report for a manager.

The main guidelines for the Daily Scrum are as follows:

e Alldevelopers should come prepared
e Anyone is welcome, but only developers may contribute
e Only Team decides how to conduct their Daily Scrum

Key Characteristics

The Daily Scrum:

e Should happen at the same time and place every day
e [slimited — timeboxed — to fifteen minutes

No detailed discussions should happen during the Daily Scrum.

During the meeting, each team member typically answers three
questions to drive the inspection and synchronization:

e What did | complete yesterday for the Team to achieve the Sprint
goal?

e What do I plan to complete today for the Team to achieve the
Sprint goal?

e Dol see any impediment on the way for the Team to achieve the
Sprint goal?

140

Key Objective

The primary goal of the Daily Scrum is to ensure the entire team
has a clear, shared understanding of the work and can quickly identify
any issues that might prevent them from achieving their Sprint Goal.

This creates focus, promotes self-organization, and minimizes the
need fFor other meetings.

After Party

Once the meeting ends, individual members can get together to
discuss issues in detail.

Such a meeting is sometimes known as a Breakout Session or an
After Party.

141

6.12. Sprint Review

At the end of a Sprint, the Team holds two events:

e Sprint Review
e Sprint Retrospective

Sprint Review is an event to inspect the outcome of the Sprint
and determine future adaptations.

The Scrum Team presents the results of their work to key

Stakeholders and progress toward the Product Goal is discussed.

Key Characteristics

During a Sprint review the team:

e Reviews the work that was completed and the planned work that
was not completed

e Presents the completed work — Demo — to the Stakeholders
and collaborates with the Stakeholders on what to work on next

Sprint Review is a working session and the Scrum Team should
avoid limiting it to a presentation.

Guidelines

The guidelines for Sprint Reviews are:

e Incomplete work cannot be demonstrated
e Recommended duration is two hours for a two-week Sprint

142

6.13. Sprint Retrospective

Sprint Retrospective is a meeting to plan ways to increase
quality and effectiveness.

The Scrum Team inspects how the last Sprint went with regards
to individuals, interactions, processes, tools, and their Definition of
Done.

At the Sprint Retrospective, the Team:

e Reflects on the past Sprint
e Identifies and agrees on continuous process improvement
actions

Guidelines

Guidelines for Sprint retrospectives:

e Recommended duration is one-and-a-half hours for a two-week
Sprint
e Scrum Master is to facilitate the event

Key Features

Three main questions should be answered during the Sprint
Retrospective:

e What went well during the Sprint?
e What went wrong during the Sprint?
e What to improve in the next Sprint?

Limits

Sprint Retrospective is the conclusion of the Sprint.

143

Thus, its usual maximum is three hours for a month-long Sprint.

The shorter a Sprint, the lesser a timebox.

144

6.14. Backlog Refinement

Backlog Refinement — also called Grooming — is the ongoing
process of reviewing Product Backlog items and checking they are
appropriately prepared and ordered in a way that makes them clear
and executable for teams once they enter Sprints via the Sprint
Planning activity.

During the Grooming:

e Product Backlog items may be broken into multiple smaller ones
e Acceptance criteria may be clarified
e Dependencies may be identified and investigated

Although not originally a core Scrum practice, Backlog
Refinement has been added to the Scrum Guide and adopted as a way
of managing the quality of Product Backlog items entering a Sprint,
with a recommended investment of up to 10% of a Team's Sprint
capacity.

Technical Debt

Technical Debt — also known as Code Debt — is the implied
cost of future rework caused by choosing quick, easy solutions now
instead of better approaches that would take longer.

Technical Debt may also be discussed during the Backlog
Refinement.

Cancelling a Sprint

The Product Owner can cancel a Sprint if necessary.

The Product Owner may do so with input from the Team, Scrum
Master or management.

145

For instance, management may wish the Product Owner to cancel
a Sprint if external circumstances negate the value of the Sprint goal.

If a Sprint is abnormally terminated, the next step is to conduct a
new Sprint Planning where the reason for the termination is reviewed.

146

6.15. Scrum Workflow

Scrum is an agile framework designed to deliver high-quality
software iteratively and incrementally.

Its structured yet adaptive workflow emphasizes:

e Flexibility
e Collaboration
e Continuous improvement

and may be represented using the following scheme.
Key Stages of the Scrum Process

1. Product Backlog Creation and Refinement

e The Product Owner maintains a prioritized list of features,
enhancements, and fixes called the Product Backlog

e |tems — user stories, bugs, tasks — are refined with estimates
and acceptance criteria

2. Sprint Planning

e The Team selects a set of backlog items for the upcoming Sprint
e Defines the Sprint Goal and creates a Sprint Backlog

3. Daily Scrum

A 15-minute daily meeting for the team to:

e Synchronize team members' work activities
e Ensure transparency and quick issue resolution

147

Product
Backlog

Sprint
Planning

Sprint
Backlog

Sprint
Daily
‘ Scrum

Increment

Sprint
Review

Sprint
Retrospective

Scrum Process

148

4. Sprint Execution

The Development Team builds, tests, and integrates features in
short cycles

Work is tracked via a Sprint Board with its To Do, In Progress, and
Done

5. Sprint Review

At the end of the Sprint, the team demonstrates the working
product increment to stakeholders
Feedback is collected to adjust priorities in the Product Backlog

6. Sprint Retrospective
The team reflects on what went well, what didn’t, and how to

improve in the next Sprint
Focuses on process improvements — tools, communication, etc

Core Scrum Artifacts

The core Scrum Artifacts are:

e Product Backlog— Dynamic wishlist of all desired features.
e Sprint Backlog — Subset of backlog items committed to in a

Sprint.
Increment — Shippable product version after each Sprint.

149

VIl. Software Testing Life
Cycle

150

1. Software Testing Life Cycle

Software Testing Life Cycle — STLC —is a sequence of
verification and validation activities conducted during SDLC to ensure
software quality goals are met.

TEST

CONCEPTION

TEST
DEVELOPMENT

Software Testing Life Cycle

151

STLC Stages

Software testing life cycle consists of the Following
methodological stages to certify a software product:

Test Conception
Test Planning
Test Design

Test Development
Test Execution
Test Closure

Test Maintenance

Nouhwhn=

Each of these stages has a definite entry and exit criteria,
activities, and deliverables associated with it.

152

1.1. Test Conception Stage

Test Conception is the stage to identify the scope of testing and
estimate if the software requirements — functional and operational —
are testable.

The Test Conception stage is also to assess the possibility of test
automation.

Key Activities

The Test Conception activities are usually aimed to:

Identify types of tests to be created

Gather details about testing priorities

Prepare Requirements Traceability Matrix — RTM
Identify the supposed test environment

Analyze automation feasibilities

Key Deliverables

The primary deliverables of the Test Conception stage commonly
include:

e Requirements Traceability Matrix — RTM
e Automation Feasibility Report — AFR

153

1.2. Test Planning Stage

Test Planning is the stage to identify the activities and resources
necessary to meet the testing goals.

Test Planning is commonly performed according to the Software
Requirement Specification, Test Strategy, and Risk Analysis.

Test Planning is also the stage to identify testing metrics and
ways to track them.

Test Plan

Test Plan is a formal document that describes the scope,
approach, resources, and schedule of intended testing activities.

It serves as a blueprint for the testing process, identifying what
will be tested, how it will be tested, who will do the testing, and when
it will be tested.

The main components of the Test Plan are:

Testing objectives
Testing scope
Testing risks

Test coverage
Required resources
Team roles

Testing tools
Testing schedule
Test deliverables

— and other values.

Key Deliverables

The main deliverables of the Test Planning stage are:

154

e Test Plan
e Testing Schedule

— where the Testing Schedule is a detailed timeline that
specifies when each testing activity will occur, how long it will take,
what resources are needed, and the sequence of testing tasks.

155

1.3. Test Design Stage

Test Design is the stage for the Checklists and Test Cases to be
created, reviewed, and updated according to the Test Plan.

The Test Design stage may and should actually start earlier than
the very process of software development.

This stage ensures systematic and efficient testing by defining

what to test, how to test, and what data to use.

Key Activities

The Test Design stage is designated to create:

Checklists based on Exploratory testing
Test Cases based on extended Checklists
Test Scripts aimed to automate Test Cases
Test Data necessary for the Artifacts above

Key Deliverables

The main deliverables of the Test Design stage are:

Checklists
Test Cases
Test Scripts
Test Data

156

1.4. Test Development Stage

Test Development is the stage where the testing team designs,
creates, and prepares all necessary artifacts needed to execute tests.

These artifacts — Test Cases, Test Scripts, Test Data — are
followed through during the Test Execution stage to ensure that the
software behaves as expected.

Key Objectives

The primary objectives of the Test Development stage are:

Define test coverage — ensure all requirements are tested
Create reusable test cases — for current and regression testing
Prepare test data — inputs, databases, APIs

Automate test scripts — where automation is applicable
Ensure traceability — link test cases to requirements

The stage bridges Test Design and Test Execution stages
ensuring structured, repeatable, and efficient validation of software.

By investing in well-designed Test Cases, Test Data, and Test
automation teams can:

e Reduce defects in production
e Accelerate regression testing
e Improve audit compliance

Key Activities

During this stage, the testing team Focuses on the following core
activities:

e Test Case Desigh — Creating detailed, step-by-step procedures
to validate specific requirements

157

Test Data Preparation — Generating and managing the data
needed to execute the test cases

Test Script Development — Writing automated scripts for
regression or performance testing

Test Environment Setup — Preparing and configuring the
hardware/software environment where tests will run

Key Deliverables

The main deliverables of the Test Development stage are:

Test Cases — Step-by-step validation procedures

Test Data — Inputs, databases, and environment setups
Automation Scripts — Code for automated test execution
Traceability Matrix — Ensures all requirements are tested
Test Suite Summary — Overview of the test coverage

Project Name
Project Type

¢ Project Start Date
Project End Date

Project Sponsor
Project Manager/Department

001

Requirements Traceability Matrix

158

1.5. Test Execution Stage

Test Execution is the stage where the QA team runs the
developed Test Cases and Test Scripts on the actual software builds
according to the Test Plan.

Key Activities

Test Execution is the "hands-on" stage where the software is
actively validated against its requirements and commonly includes:

Environment deployment and setup
Test cases and test scripts execution
Test cases and test scripts adjustment
Defect reporting

Defect retesting

When bugs are fixed, the developer team renders a new build for
the Quality Assurance team to retest software.

Key Deliverables

The main Test execution deliverables are:

e Requirements Traceability Matrix mapped with:

o Bugs
o Test cases
o Test scripts

e Test Cases adjusted to the current application state
e Test Scripts updated to the current application version
e Defect Reports

159

1.6. Test Closure Stage

Test Closure is the stage when test execution activities of the
current development cycle are formally concluded.

Key Objectives

The main purpose of the Test Closure is to evaluate and assess
the overall effectiveness and efficiency of the Test Execution stage.

Test Closure allows also to document the executed tests
outcomes gathering them in Test Results Report — TRR — and to store
the Test Artifacts keeping them for Future reference.

Test Results Report

Test Results Report — or Test Completion Report — is the
main document of the Test Closure stage which provides insights into
discovered and resolved issues.

New: 1
I I Review of initial Report: 3

Test Results Report

160

Test Results Report commonly includes:

e Consolidated Test Results
e Detailed Error Analysis
e Metrics Presentation

Test Results Report signals the completion of testing activities
and informs Stakeholders about the cutoff of the Testing stage.

Key Deliverables

Test Closure deliverables commonly include:

e Test Status Report
e Test Results report
e Test metrics

In summary, Test Closure ensures that testing objectives are met,
errors are documented, and the Testing stage successfully concludes.

161

1.1. Test Maintenance

Test Maintenance is the ongoing stage where test assets —
cases, scripts, data, and environments — are updated, optimized, and
retired to keep pace with evolving software.

Unlike one-time test execution, Test Maintenance ensures
long-term relevance, efficiency, and accuracy of testing processes as
the application changes.

Key Objectives

The main goals of the Test Maintenance stage include:

e Keeping tests healthy — Test maintenance ensures that both
manual test cases and automated test scripts remain relevant
and effective as the application evolves.

e Automation framework continuity — Automation framework
dependencies are to be aligned with the changes to the tools or
third-party libraries.

e Regression testing — Helps ensure that the code changes do not
break existing functionality, and automated regression testing
suite typically contains a big number of tests, which require
ongoing maintenance to validate the application properly.

e Continuous Integration — Automated tests run through
Continuous Integration pipelines to identify and resolve issues
quickly; ensuring that tests are always up to date is crucial in this
context, as builds won't complete if tests Fail.

e Reporting — Regular reporting helps Quality Assurance
Engineers identify broken tests that need updating.

162

Key Activities

e Test Artifact Review and Updates:

o Test Cases — Add or remove steps based on feature
changes and re-prioritize test cases

o Test Data — Refresh datasets to match production changes
and anonymize sensitive data for compliance

e Automated Test Script Maintenance:

o Fix broken locators after Ul redesigns
o Refactor scripts
o Update libraries, frameworks, and other dependencies

e Test Suite Optimization:

o Remove redundancy — Merge duplicate tests

o Improve coverage — Add tests for untested scenarios

o Tag tests — smoke, regression, sanity — for better
execution control

e Traceability Matrix Updates

o Ensure test cases map to current requirements
o Highlight gaps where new tests are needed

Key Deliverables

The main deliverables of the Test Maintenance stage are:

Updated Test Cases — Aligned with new software functionality
Refactored Test Scripts — Improved in stability and performance
Test audit report — Reflecting the added or removed tests

Flaky test log— Documentation of unstable tests and fixes

163

Viii. Test Documentation

164

8. Test Documentation

Test Documentation is a set of test documents used for the
purpose of Software quality assurance.

Test Documentation Scopes

The Test Documentation scopes may be represented the
following way.

/ Test Policy \

/ Test Strategy \
/ Test Plan \
/ Test Suite \

Test Script

Test Case

Checklist

WL W I

Test Documentation Scopes

165

Documentation Categories

Test Documentation may be split into three main categories:

e Test Execution documentation
e Test Automation scripts and data
e Test Conception documentation

Test Execution Documentation

The main Test execution documents are:

e Checklist
e Test Case — or Test Scenario
e Test Suite

Test case being the most important document for the SQA.

Test Automation Documents

The main test automation documents include:

e Test Script
e Test Data

In automation, often, test data is being created automatically.

Though Test data is used in manual testing either, in automation
it plays a special role and meaning.

Test Policy Documentation

The main Test conception documentation include:

e Test Plan
e Test Strategy
e Test Policy

166

Test Plan and Test Strategy may either be separate documents or
a single one; the choice depends on the documentation developer and
the software scope.

If a project is bigger in size, it makes sense to have different
documents — else, these documents may be united in one.

167

8.1. Checklist

Checklist is a flat list of verifications to undertake during the
Testing stage.

It helps to split the software Functionality into separate testing
blocks and allows to understand the scope of testing and how many
checks Failed.

Quality Assurance Checklist

Date:

Prepared By:

QA Checklist YES, NO, N/A Comments

In Checklist, the test order may be random because it does not
matter.

Checklists are common for initial stages of the project when Test
Cases are only planned for the future development.

Benefits

The main advantages of Checklists are as follows:

e Flexibility — Checklists can be used in all testing types
e Simplicity — Checklists are easy to create and maintain

168

Quickness — Checklists are fast to develop and understand
Brevity — Checklists have only a couple of Fields to Ffill out
Results analyzability — Checklists are easy to follow and examine
Team integration — Checklists simplify QA members onboarding
Deadlines control — Checklists let control test accomplishment

Drawbacks

The main disadvantages of using Checklists in testing are:

Different Interpretation — QA Engineers can accomplish
identical tasks using different approaches

Coverage Gaps — It is difficult to capture all functional or
structural components, especially those of higher levels

Item Overlap — Trying to cover a big scope of material may lead
to duplicated tasks and, as a consequence, to excessive testing
Reporting Problems — Checklists can hardly describe complex
system components, functions, and their interaction

169

8.2. Test Case or Test Scenario

Test Case — often called a Test Scenario — is a sequence of
steps dedicated to verify the expected software behavior.

The cardinal difference between a Checklist and a Test Case is
the Expected Result field obvious for the Test Cases.

Test Case Template

| TestCaseWeader [[0000000 0000 00|
[tTestcaseName [[0 00000000
2. ModuleName [[[000000
3.Requirementno. [[0 0000000 00O 0]
4Testbsta | 1 0 00000000 0001 000000
Ssevety [0 0 0]
6.Precondition [[0000000 0000 000000
7.TestCasetyee [[000000 00O 0]
8 BriefDescripton | [[00000000000 000001 0000 |
O Y Y

Step No. Expected Result

Test Case Footer
L AuthorName [[000000
2.Receivedey | [! 0000000 000000 0000000
3.Approvedsy | [0000l 0000000000000 000000 000000
[4.ApprovedDate [[[[]

Test Case is the main testing document and is often synonymous
for the very term Test.

Test Case Types
There are two types of Test cases:
e Informal
e Formal

Informal Test Case is the Test Case used for the software which
doesn't have Formal requirements being based on the accepted normal
operation of the software of a similar class.

170

Formal Test Case is the Test Case characterized by a known input
and expected output, which is figured out before the test is executed.

Mandatory Fields

Formal Test Case format may include various parameters but the
mandatory fields are as follows:

ID

Description
Steps

Expected result
Status

Priority

The shortest Test case format may omit the Priority field.

Requirement Traceability Matrix

In order to fully verify that all requirements for the software are
met, there must be at least two Test Cases for each requirement:

e Positive
e Negative

If a requirement has sub-requirements, each sub-requirement
must have at least two Test Cases either.

Keeping track of the link between the requirement and the test is
frequently done using a Requirement Traceability Matrix.

Formal Test Case Structure

Written Test Cases should include a description of the
functionality to be tested, and the preparation required to ensure that
the test can be conducted.

171

Typical written Test Case format may include:

e ID — Unique identifier of the Test Case

e Author — Test Case's developer name

e Test Category — The group a Test Case belongs to

e Description — or Summary — The objective of the Test Case

Pre-conditions — or Pre-requisites — The conditions to be met

before the test steps execution

Test Data — The variables and their values in the Test Case

Steps — Actions to be performed during the Test Case execution

Expected Result — The expected outcome of the executed Step

Post-conditions — The result of the Step execution

Actual Result — The result retrieved after the Step execution

e Status — The Pass-or-Fail outcome of the Expected and Actual
Results comparison

e Priority — The Test Case's importance for Regression Testing

e Automation — A mark whether the Test Case is to be automated

e Automated — A mark whether the Test Case is automated

e Remarks — A set of notes related to the test Step

The majority of the fields above are optional and may be omitted
in the Test Case format.

Test Scenario

Test Scenario is a step by step end-user activity documented for
a certain functionality to be tested.

While the Test Case is better suited for Unit Testing, the Test
Scenario better fits for the End-To-End — E2E — Functional Testing.

Test Cases are usually brief verifications while Test Scenarios
cover a significant number of steps to validate an expected result and
are better suited for automation.

172

TESTING SCENARIO

Test Scenario

Test Case 1

® 0
®© 0
® 0
® 0

Test Case 2

o008
OO0

The purpose of the Test Scenario is to follow the end-to-end

consequence of steps to test a specific complex issue or troublesome
use case.

173

8.3. Test Script and Test Data

Test Script is a program designated to automate Test Case steps
and verifications.

Each Test Script is typically associated with a Test Case.

normalizeHtml.spec.js

import normalizeHtml, {normalizeHtmlAttribute} from "./normalizeHtml"

describe("normalizeHtml", function(){
it("Converts & to &'", function(){
expect(normalizeHtm1("&")).toBe("&")
1)
it("Converts » to »", function(){
expect(normalizeHtml("»")).toBe("»"
1
1)

describe("normalizeHtmlAttribute", function(){
it("Converts & to &'", function(){
expect(normalizeHtmlAttribute("&")).toBe("&")
1
it("Converts » to &raquo;", function(){
expect(normalizeHtmlAttribute("»")).toBe("& raquo;")
1)
it("Converts guote signs to "", function(){
expect(normalizeHtmlAttribute('\""')).toBe(""")
1
1)
23 |

After the Test Script is implemented, it usually replaces the Test
Case associated with it during the Software testing life cycle.

Test Script is commonly created to test a part of the software
system functionality.

174

Test Scripts can be created using general purpose programming

languages, special test-script programming languages, or Graphic User
Interface test-recording tools.

Test Scripts are crucial while mocking a situation inimitable for a

human being, for instance, as a part of Load Testing.

Test Script Components

The main Test Script components are as follows:

Test Steps — The detailed instructions for each test action
Expected Results — The behavior expected from the software
Test Data — The input values needed for the test

Assertions — The conditions to comply during the script run

Test Script Development

The Test Script development process usually includes:

Test Case analysis — Understanding of software requirements
Test Case design — The detailed Test Case creation

Test Script coding — The Test Case into Test Script translation
Test Data preparation — The relevant data generation

Test Script execution — Running the Test Script

Test Script storage — Keeping the test code in repository

Benefits

Automated testing is advantageous for a number of reasons:

Test Scripts may run continuously
Test Scripts do not need a human
Test Scripts are easily repeatable
Test Scripts are much Faster

175

Drawbacks

Test Script, as a software to test a software:

e May contain their own flaws
e Require higher level of expertise
e Can only examine what they are programmed to examine

Test Data

Test Data is the data specifically designated to be used in tests.

Test Data may be produced by the tester, or by a program that

aids the tester.

dvdrental=# select title,

title
West Lion
Virgin Daisy
Uncut Suicides
Tracy Cider
Song Hedwig
Slacker Liaisons
Sassy Packer
River OQutlaw
Right Cranes
Quest Mussolini
Poseidon Forever
Loathing Legally
Lawless Vision
Jingle Sagebrush
Jericho Mulan
Japanese Run
Gilmore Boiled
Floats Garden
Fantasia Park
Extraordinary Conquerer
Everyone Craft
Dirty Ace
Clyde Theory
Clockwork Paradise
Ballroom Mockingbird
(25 rows)

+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

release_year, length,
dvdrental-# where length > 120 and replacement_cost > 29.50
dvdrental-# order by title desc;

release_year
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006

replacement_cost from film

5 B
2 S)E]
el
2)]
2 EIE)
2 S
2 S)E]
el
2)
2 EIE)
2 S
2)]
5)
2)
2 EIE)
2 S
2)]
5)
2 S
2 EIE)
2 S
2)]
el
2 S
2 EIE)

29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29

176

Test Data may be recorded for re-use, or used once and then
forgotten.

Test Data may be split into two following types:

e Synthetic Data — also called Fake Data
e Representative Data — also called Real Data

Synthetic Test Data are either manually created or created by
data generation tools.

Representative Test Data are usually taken from the production
environment and then anonymized.

177

8.4. Test Suite

Test Suite is a collection of Test Scenarios, Test Cases, or Test
Scripts to be executed in a specific test run.

Test Suite often contains detailed instructions or goals for each
collection of test items and information on the system configuration to
be used during testing.

It may also contain pre-requisite states or steps, and descriptions
of the following tests.

Key Objectives

Test Suite is a container that has a set of tests which helps testers
in executing and reporting the test execution status.

In a Test Suite, the Test Cases or Test Scripts are organized in a
logical order — for example, the Test Case for registration will precede
the Test Case for login.

178

Test Suite can take one of the following states:

e Active
e In progress
e Completed

Test Suite Types

Test Suites are used to group similar Test Cases together.
Test Suites are often grouped for the following types:

Smoke test suite — Test Cases collection that performs a basic
validation for the majority of the product's Functional areas and is
executed after each product build, before the build is promoted
for use by a larger audience

Sanity test suite — Test Cases collection that ensures basic
software functionality and serves as the first validation level
performed after changes are made to the product

Critical Path test suite — Test Cases collection that crosses the
software boundaries and ensures that the integration points
between products are exercised and validated

Functional Verification test suite — Test Cases collection that
Focuses on a specific software Function and ensures that several
aspects of a specific feature are tested

Regression test suite — Test Cases collection used to perform a
regression analysis of the functional software areas, often added
into multiple Test Suites and Test Plans

179

8.5. Test Plan

Test Plan is a product-level document that describes the test

objectives, schedule, estimation, deliverables, and resources required
for the software testing.

Key Objectives

Test Plan serves a template to conduct software testing activities

as a defined process monitored and controlled by the Test manager.

Test Plan must be consistent with the company's Test Policy and

Test Strategy documents.

Key Components

Test Plan should usually include:

Test Plan identifier

References

Introduction

Test items

Software risk issues

Features to be tested

Features not to be tested
Testing approach

Test Pass/Fail criteria
Suspension criteria and Resumption requirements
Test deliverables

Test environment setup

Staffing and training needs
Team member responsibilities
Testing schedule

Risks and contingencies planning
Approvals

180

e Glossary
— and other chapters.

Test Plan components mentioned above are not mandatory and
may be omitted on necessity.

Test Plan Template

Often, companies create their own formats which are roughly
based on any standard.

Benefits

Test Plan document has multiple advantages as it:

e Helps people outside the QA team — developers, business
managers, customers — understand the details of testing

e Guides QA team's thinking towards test procedures to be
completed

e Documents key aspects — test estimation, test scope, test
strategy — for future review and reuse in other projects.

181

8.6. Test Strategy

A Test Strategy is a high-level, organization-wide document that
outlines the approach, objectives, and execution plan to test a product.

It serves as a blueprint to ensure testing aligns with business
goals, technical requirements, and quality standards.

Key Objectives

The purpose of the Test Strategy is to:

Define the scope, focus, and methodologies of testing

Align testing efforts with project timelines and business goals
Ensure consistency across teams

Optimize resource allocation — tools, budget, personnel
Mitigate risks through structured planning

Key Components

The main chapters of the Test strategy are as follows:

Scope and Objectives — What will be tested and why

Testing Types — Functional, non-functional, regression, etc
Test Levels — Unit, integration, system, UAT, etc

Test Environment — Hardware, software, and tools required
Test Data Management — How test data will be created, stored,
and anonymized

Roles and Responsibilities — Who designs, executes, and
approves tests

Risk Analysis — Identify high-risk areas and mitigation plans
Entry and Exit Criteria — Conditions to start and stop testing
Automation Approach — Tools, coverage, and CI/CD integration
Defect Management — How bugs are logged, prioritized, and
retested

182

e Metrics and Reporting — Key performance indicators, KPIs, and
reporting frequency

e Deliverables — Test Plans, Test Cases, Test Result Reports, and
Audit Logs

Test Strategy Role

A well-defined Test Strategy ensures testing is structured,
efficient, and goal-driven.

It bridges the gap between business objectives and technical
execution, reducing costs while maximizing quality.

183

8.1. Test Policy

Test Policy is the company-level document which defines the
test principles adopted by an organization.

Test policy is determined by the company's Chief Executive
Officers — CEOs — which provide an organizational insight for the test
activities.

Key Objectives

The Test Policy commonly describes:

The place of testing in the company
Test objectives of the organization
Testing process definition

Test effectiveness measurement

Test processes improvement approach

184

8.8. Test Management Systems

Test Management System — TMS — is an application
designated to help teams manage their software testing processes
effectively.

TMS can cover all test documentation levels and provide a
centralized location for storing and managing Test Cases, Scenarios,
Requirements, and Defects.

Key Objectives

Test Management Systems play a crucial role in ensuring
software quality by automating the following processes:

e Requirements Traceability
e Project Tasks Tracking

e Test Case Management

e Automated Scripts Execution

e Defect Tracking

e Reporting and Metrics Provision

Benefits

The main advantages of Test Management Systems are as
fFollows:

e Testing process consolidation
e Efficient data access and analysis
e Effective communication across teams

185

IX. Software Quality
Defects

186

9. Software Quality Defects

Software Quality Defect — also called Bug or Fault —is a flaw,
error, or imperfection in a software product that causes it to behave in
unintended ways or fail to meet specified requirements.

Defects represent deviations between actual and expected
requirements, specifications, or user expectations, resulting in either
functional flaws — crashes, wrong outputs, etc — or non-functional
shortcomings — slow performance, security vulnerabilities, and so on.

Key Characteristics

Defects may be classified using the following key characteristics:
1. Root Causes:

e Coding errors

e Flawed design or architecture

e Misunderstood requirements

e Environmental incompatibilities

2. Impact Levels:

e Critical — System crashes, data loss
e Major — Core features malfunction
e Minor— Cosmetic issues

3. Detection Methods:

e Testing
e Code reviews
e User feedback

187

Defect Management Role

Defect management plays a crucial role For the following main

reasons:

Cost — fixing defects post-release is many times costlier than
during development

Reputation — usually, one in four users abandon the software
after the app crashes

Compliance — defects in healthcare or fintech software can
violate regulations and bring to penalties

Best Practices

The best practices to reduce software defects should include:

Shift-Left Testing — catching bugs in advance introducing unit
or integration tests as early as possible

Static Analysis — dedicated tools implementation for the code
quality checks

Peer Reviews — 60-90% of defects avoidance via the regular
code reviews

Automated Regression Testing — preventing the reintroduction
of old bugs by automating the test cases for known issues

188

9.1. Defect Classification

The software quality defects are commonly classified using the
fFollowing criteria.

Defect Classification By Severity

Considering the impact on a system, software defects may be
treated as:

e Critical — Causes system crash, data loss, or complete failure:

o Database corruption
o Application crash on startup etc

e High — Major functionality broken but system remains operable:

o Login failure
o Payment processing error and so on

e Medium — Partial functionality loss with workarounds available:

o Search returns incomplete results
o Ul fFormatting issues and others

e Low — Cosmetic issues with no functional impact:

o Spelling errors
o Minor alignment problems and alike

Defect Classification By Priority

By urgency of fix, software defects may be divided into the
following groups:

e Immediate — Must be fixed immediately, blocking further work
and should be fixed the next build

189

e High — Important to fix soon, affects key functionality and
should be fixed in current release

e Medium — Has workarounds and should be fixed the next
release

e Low — Minor issues which may be fixed when convenient, as a
rule in a future release

Defect Classification By Origin

Considering the source of a defect, they may be split into the
following categories:

e Requirements Defects — Incorrect or missing requirements:

o Unclear business rules
o Conflicting requirements etc

e Design Defects — Architecture or design flaws:

o Poor database design
o Insecure architecture etc

Coding Defects — Implementation errors:

o Syntax errors
o Logicerrors
o Boundary condition issues etc

Testing Defects — Errors in test cases or environment:

o Incorrect test data
o Environment configuration issues etc

Integration Defects — Component interaction issues:

o API compatibility problems
o Data format mismatches and others

190

The Defect Life Cycle may be represented with the fFollowing

scheme.

9.2. Defect Life Cycle

New

l

Duplicate [«— Assigned |[—> Rejected

l

—— Open J

l

Cannot

Reopened Fixed Reproduce

Retest

Verified

Y

Closed <

Defect Life Cycle

191

Detailed State Transitions

Understanding software defects and their life cycle is
fundamental to effective quality assurance.

A well-managed defect process includes as a rule following
Detailed State Transitions:

New — Defect is identified and logged for the first time
Assigned — Defect is assigned to developer

Duplicate — Defect already reported by someone else
Rejected — Defect is invalid or not a bug

Open — Developer accepts and starts working on the defect
Fixed — Developer has implemented the fix

Retest — Tester verifies the Fix

Reopened — Fix is incomplete or defect reappears

Verified — Fix is confirmed to be working correctly

Closed — Defect is formally closed in the system

192

9.3. Defect Report

Defect Report — also called Bug Report — is a formal
document that describes a software flaw or failure that causes it
to behave unexpectedly or produce incorrect results.

It serves as the primary communication tool between
testers, developers, and stakeholders to track and resolve
software issues.

Key Components

The essential Bug Report components are as follows:

Defect ID — Unique identifier

Summary — Brief, descriptive title

Reported By — Who found the defect

Report Date — When defect was found

Component — Affected module of application

Severity — Impact on system functionality

Steps to Reproduce — Exact sequence to recreate defect
Expected Result — What should happen according to SRS
Actual Result — What actually happens

Environment — Where defect was found

Evidence — Screenshots, records, logs, database snapshots

Key Characteristics

Effective Defect Reports are:

Clear — Easy to understand without ambiguity
Concise — No unnecessary information
Complete — Contains all needed information
Consistent — Follows organizational standards
Reproducible — Others can recreate the issue

193

Writing effective Defect Reports requires:

e Using objective language — "Clicking 'Submit' button displays
error message: 'Database connection failed'”, not "The system is
broken when you try to save data”

e Being specific and detailed — "Dropdown shows 5 items instead of
expected 7: missing Admin' and ‘Manager' roles"”, not "Dropdown
options are wrong"

e Placing one defect per report — Defect A: "Login button not
working", Defect B: "Password field allows invalid characters”, not
“"Login and password fields have issues”

e Including visual evidence:

o Using arrows or circles to highlight issues in screenshots
o Recording videos for complex multi-step defects
o Capturing relevant log entries with timestamps

A well-written Defect Report is more than just a bug description
—it's a critical communication tool that drives quality improvement.

Key Objectives

Effective defect reporting:

Accelerates problem resolution through clear communication
Provides data for quality metrics and process improvement
Ensures accountability through proper tracking

Supports informed release decisions

The quality of Defect Reports directly impacts the efficiency of
the development process and the quality of the final product.

Investing time in writing clear, complete, and professional Defect
Reports pays significant dividends throughout the SDLC.

194

K. Software Testing
Classification

195

10. Software Testing
Classification

Software Testing Classification is a systematic categorization of
the software testing categories according to their purpose criteria.

The perception of classification allows making informed decisions
and contributing to delivering reliable software products.

Key Objectives

The goals of the Software Testing Classification include:

Comprehensive Segmentation
Testing Strategy Tailoring
Efficient Resource Allocation
Forcible Risk Mitigation
Responsive Quality Assurance

The choice of the testing type depends on such factors like:

System scope

SDLC stage

Project budget
Software significance

196

10.1. Software Conception Stage
Categories

Software Conception is the stage to define the very approach

for the documentation strategy of the upcoming development, testing,
and related processes.

There are two major testing types crucial for the Software
Conception stage:

e Casual testing
e Formal testing

STAGE SOFTWARE TESTING CLASSIFICATION Focus

v
Conception Casual Testing |-~ » Formal Testing New Feature

The dashed line illustrates the transition from Casual to Formal
Testing, because Formal Testing provides the reliability, repeatability,
and accountability that Casual Testing inherently lacks.

Casual Testing

Casual testing is a type of Software testing performed without
any dedicated planning, documentation, and procedures.

There are three major types of Casual testing:

e Ad hoc testing
e Intuitional testing
e Exploratory testing

197

Casual Testing

h 4 h 4 h 4

Ad Hoc Testing Intuitional Testing Exploratory Testing

Ad Hoc Testing

Ad Hoc Testing — from latin "To this purpose" — is the least
formal type of Casual testing, also called Random Testing.

Ad Hoc tests are only run once, unless a bug is discovered, and
since the very testing is not documented, the found defects are
difficult to reproduce.

The strength of Ad Hoc Testing is in its applicability during the
earliest stages of development life cycle so the evident bugs are found
quickly.

Test Planning Documentation Prior Experience
Ad Hoc Testing No No No
Intuitional Testing No No Yes
Exploratory Testing No Yes Yes

Intuitional Testing

Intuitional Testing — often called Error Guessing — is a type of
Casual Testing based on prior testing experience and expertise.

Error Guessing has no explicit testing rules and depends on the
situation entirely.

It is solely determined by the past experience and intuition of a
Quality Assurance Engineer who may possibly know the problem areas
which commonly invoke the software failures.

198

Exploratory Testing

Exploratory Testing is a type of Casual Testing performed as a
process of simultaneous learning, test design, and test execution.

Cem Kaner, who coined the term in 1984, defines exploratory
testing the following way:

"Exploratory testing is a style of software testing that emphasizes
the personal freedom and responsibility of the individual tester to
continually optimize the quality of his/her work by treating test-related
learning, test design, test execution, and test result interpretation as
mutually supportive activities that run in parallel throughout the project.”

While the software is being tested, the tester learns things that
together with experience and creativity generates new tests to run.

Checklist is the only artifact used to structurize the Exploratory
Testing in order not to waste time repeating the same tests.

Formal Testing

Formal Testing is a type of software testing performed with
proper planning, documentation, and procedures.

It is carried out with meticulous Test Cases documentation and
systematically adheres to the Software testing life cycle.

Formal Testing is more expensive due to the outlays for the test
case preparation, personnel training, and documentation authoring.

Origins
Formal Testing has three primary documentation origins:

e User Stories
e Business Scenarios
e Software Requirements Specification

199

User Stories

User Stories are concise statements used in software
development which communicate a single feature, task, or goal from
the User's perspective.

A typical User Story format is: "As a Type of User, | want Some
Goal so that Some Reason", for instance:

"As an online shopper, | want to be able to filter products by
category so that I can easily find the items I'm interested in."

Business Scenarios

Business Scenarios are loosely defined descriptions of specific
situations explaining the User's view on achieving a goal or completing
a task.

They reveal the Customer's perspective on a software feature
omitting the process of its implementation and can be depicted as a
series of steps.

Business Scenarios provide context and comprehension on how a
particular type of person might interact with a product or service.

Software Requirements Specification

Software Requirements Specification is the documented set of
expectations which encompasses all functional aspects to fForm a test
execution basis for multiple features, constraints, and capabilities.

It serves as a single source of truth both for the program code
and Test Case development during the next stages of the Software
development life cycle.

Formal Testing Types

Respectively, there are three major types of Formal testing:

200

e Story-based testing
e Scenario-based testing
e Specification-based testing

201

10.2. Software Planning Stage
Categories

Software Planning is the stage to determine the very testing
approach for the following software development life cycle.

There are two major testing types crucial for the Planning stage:

e Static Testing
e Dynamic Testing

STAGE SOFTWARE TESTING CLASSIFICATION Focus
]
L ¥
Conception Casual Testing |-~ » Formal Testing New Feature
Planning Static Testing |-~ > Dynamic Testing Documentation

The dashed line indicates a trend of favoring Dynamic Testing
over Static Testing, as the Former excels at detecting the wider range
of specific defects, while the latter is only superior for early defect
prevention.

Static Testing

Static Testing is a type of Formal Testing performed without the
software code execution.

For this reason, Static Testing is also called:
e Documentation testing

e Non-execution testing

202

e Verification testing
e Testing review

Tested Documents

The most important statically tested documents include:

Requirements Analysis documents:
o User Stories
o Business Scenarios
o Software Requirement Specifications

Software Design Specifications

Test design documentation:
o Test Plans
o Test Cases

Test development documentation:
o Source code
o Test Scripts

Release documentation:
o User manuals
o Helps

Static Testing Purpose

Static Testing, requiring no software run, allows catching crucial

bugs and ambiguities on the earliest stages of the development.

The earlier logic mistakes and requirement contradictions are

found, the lesser the cost of their correction and the straighter the
process of software development.

203

Dynamic Testing

Dynamic Testing is a type of Formal Testing performed with the
software code execution.

It allows validating the software functional behavior, memory,
processes, and overall performance in dynamics.

That's why Dynamic Testing is also called Execution Testing or
Validation Testing.

Dynamic Testing Purpose

Dynamic Testing focuses on evaluating the runtime behavior of
the software code and observing its behavior under various conditions.

It aims to ensure that the software functions correctly during and
after installation, and implies actual output collation with the expected
one.

Dynamic Testing may begin before the software is ready; certain
units or components may be tested dynamically using stubs, drivers, or
debuggers.

pA 4

10.3. Software Design Stage
Categories

Software Design is the stage which allows acquiring the first
operable Prototype or Minimum Viable Product — MVP.

There are two major software testing types during the Design
stage:

e Passive Testing
e Active Testing

STAGE SOFTWARE TESTING CLASSIFICATION Focus
]
L ¥
Conception Casual Testing |-~ » Formal Testing New Feature
Planning Static Testing |-~ > Dynamic Testing Documentation
Design Passive Testing H Active Testing - Prototype

The dashed line represents the trend of transitioning from
Passive to Active Testing driven by the need for speed, reliability, and
continuous feedback in modern software development.

Passive Testing

Passive testing is a type of Dynamic Testing performed through
the code execution with no User interactions with the software.

Passive Testing means verifying the system behavior through the
offline runtime verification, log analysis, and stack trace inspection.

205

Active Testing

Active Testing is a type of Dynamic Testing performed through
the code execution along with User interactions with the software.

Active Testing is dedicated to evaluate the robustness, reliability,
and optimal performance of the software in dynamic environments.

206

10.4. Software Development Stage

Categories

Software Development is the stage which provides both
executable and testable builds of a target software.

There are three testing types performed during the

Development stage:

e Black Box Testing
e Gray Box Testing
e White Box Testing

STAGE

Conception

Planning

Design

Development

SOFTWARE TESTING CLASSIFICATION

k.

¥

Casual Testing

Formal Testing

l

Static Testing

Dynamic Testing

l

Passive Testing

¥

Active Testing

k4

Black Box Testing

White Box Testing

FOCUS

New Feature

Documentation

Prototype

Software Build

The dashed line depicts the trend of transitioning from Black Box
Testing to White Box Testing as defect prevention is more efficient and
cost-effective than detection.

207

Black Box Testing

Black Box Testing is a type of Active Testing performed with no
knowledge of software code, internal structure, and implementation
details.

The term symbolizes the inability to see the inner software
implementation so that only testers' experience can be applied.

Black Box Testing requires manual quality assurance skills which
can better imitate the external behavior of terminal users.

There are five Black Box Testing levels, depending on the tested
scope:

e Smoke Testing

e Sanity Testing

e Critical Path Testing
e Extended Testing
e Exhaustive Testing

/ Exhaustive Testing \

Extended Testing

Critical Path Testing

Sanity Testing

\ _ Smoke Testing Y, /

Smoke Testing is the minor level of Black Box Testing performed
to reveal evident bugs severe enough to reject a software build
promoted for further verification.

208

Sanity Testing is a type of Black Box Testing performed to
quickly evaluate the software operability against the basic set of
verifications.

Critical Path Testing — also called End-to-End testing —is a
type of Black Box Testing carried out to analyze the Functionality most
commonly employed by the majority of software users.

Extended Testing is a type of Black Box Testing performed to
explore all declared functionality specified in the Software
requirement specification.

Exhaustive Testing — or Complete testing — is a type of Black
Box Testing performed to confirm that software functions correctly
under every possible situation.

While Exhaustive Testing is not actually achievable, diligent
testing helps create robust applications with minimal defects.

Gray Box Testing

Gray Box Testing is a type of Active Testing performed with a
partial notion of software code, internal structure, and implementation
details.

The term implies that the approach is a combination of both
Black Box and White Box Testing.

White Box Testing

White Box Testing is a type of Active Testing performed with the
knowledge of software code, internal structure, and implementation
details.

The term refers to the see-through box concept which symbolizes
the ability to see through the software's outer shell into its inner state.

209

White Box Testing requires software or test developers to create
Test Scripts making this type of testing more expensive.

There are five White Box Testing levels, depending on the tested
scope:

Unit Testing
Component Testing
Module Testing
Integration Testing
System Testing

/ System Testing \

4 Integration Testing

Module Testing

Component Testing

\ _ Unit Testing Y, /

Unit Testing is the minor level of White Box Testing, typically
performed by developers, which spots on testing the individual units,
in isolation.

Component Testing is a type of White Box Testing performed on
a compound feature derived from the independent units coalition, in
isolation.

Module Testing is a type of White Box Testing which Focuses on
testing the independent Modules made of grouped Components, in
isolation.

210

Integration Testing is a type of White Box Testing performed on

a set of modules joined in a Sub-system entity to verify the combined
operability.

System Testing is a type of White Box Testing conducted on the
integrated software to evaluate its compliance with the requirements
specified.

211

10.5. Software Testing Stage
Categories

Software Testing is the stage of repetitive software build
validations to fetch it to the state of a Release Candidate.

Release Candidate — RC —is a potentially shippable version of
software that is feature-complete and considered ready for final
testing before official release.

It represents the final stage of the development cycle where the
software is deemed likely to become the production version unless
critical issues are discovered.

There are two types of testing performed during the Software
Testing stage:

e Operational Testing
e Functional Testing

STAGE SOFTWARE TESTING CLASSIFICATION FoCUs
L. ¥
Conception Casual Testing |-~ > Formal Testing New Feature
Planning Static Testing |-~ > Dynamic Testing Documentation
Design Passive Testing s Active Testing Prototype
Y
Development Black Box Testing |---- » White Box Testing Software Build
Y
Testing Operational Testing ----» Functional Testing Release Candidate

212

The dashed line reveals the greater importance of Functional

Testing over Operational Testing underscoring that working software is

a prerequisite for evaluating how well it works in terms of speed,

security, or reliability.

Operational Testing

Operational Testing is a type of White Box Testing performed to

validate operational — non-functional — aspects of the software.

Non-functional aspects are those that reflect the quality of the

product, particularly in the context of the suitability perspective of its
users, and are never related to a specific software function:

Performance
Usability
EIEDLIWY,
Scalability
Security etc

Operational Testing is designed to verify the software readiness

of the non-functional aspects which are never addressed by Functional
testing.

It validates the way software operates, as opposed to the

functional behaviour verification.

There are four major types of Operational Testing:

Installation Testing
Usability Testing
Payload Testing
Security Testing

Operational Testing Purposes

Operational Testing refers to the software aspects that may not

be related to a particular function or User action.

213

Operational Testing implies the software requirements testing
that are not functional in nature but important enough for the system
operability.

Operational requirements reflect the software quality as a
whole, in the context of its users suitability perspective, particularly.

Functional Testing

Functional Testing is a type of White Box Testing performed to
validate the software against its functional requirements and
specifications.

Functional Testing Purposes

Functional Testing serves to verify the software actions by
providing an input and estimating the output against the documented
conditions.

A software function has two distinctive non-operational features
crucial for the Functional Testing:

e Evaluability — Expected and actual results' existence
e Bilaterality — Positive and negative testing approaches

Evaluability

Software function evaluability refers to the simplicity and
effectiveness with which this function can be assessed, measured, and
judged against specific criteria.

Bilaterality

Bilaterality is a distinctive property of a software function which
is achieved due to its reciprocity for the testing purposes.

214

Bilaterality allows to split Functional Testing into two major
types:

e Positive Testing
e Negative Testing

Positive Testing

Positive Testing — or Happy Path Testing — is a type of
Functional Testing performed on a software by providing valid, proper,
and correct data as input.

Positive Testing verifies whether the software behaves as
expected with positive and awaited user inputs, or not, to confirm the
software viability.

Positive Testing should precede the Negative one because
defects found through the Positive tests prevent the necessity for
further testing.

Negative Testing

Negative Testing is a type of Functional Testing performed on a
software by providing invalid, corrupt, or improper data as input.

Negative testing verifies whether the software behaves as
expected with negative or unwanted user inputs, or not, to uncover
issues in error handling.

It means, a software might and actually should work correctly
under improper contexts, that is under Negative Testing.

215

10.6. Software Deployment Stage
Categories

Software Deployment is the stage where the Release Candidate
is being tested, approved, and rendered to the Client.

There are two testing types performed during the Deployment
stage:

e Feature Testing
e Regression Testing

STAGE SOFTWARE TESTING CLASSIFICATION Focus
L. ¥
Conception Casual Testing |-~ > Formal Testing New Feature
Planning Static Testing |-~ > Dynamic Testing Documentation
Design Passive Testing -- ¥ Active Testing Prototype
v
Development Black Box Testing |---- > White Box Testing Software Build
L 4
Testing Operational Testing [----» Functional Testing Release Candidate
Deployment Feature Testing --» Regression Testing Deployable Version

The dashed line reflects the common and critical mindset in the
professional software industry that protecting existing functionality is
a higher priority than validating the new one.

216

Feature Testing

Feature Testing — or New Feature Testing — is a type of
Functional Testing performed to verify the new code or environment
amendments comply with the software requirements.

The goal of new Feature Testing is to ensure that augmented
functions perform as expected, introduce no defects, and maintain
overall software quality.

Regression Testing

Regression Testing is a type of Functional Testing performed to
verify the new code or environment amendments retain the previously
achieved quality.

Regression Testing implies that already developed tests are
re-executed to verify the influence of changes on the functionality that
existed before.

217

10.7. Software Maintenance Stage
Categories

Software Maintenance is the stage to enhance the software test
coverage to assure its higher quality prior to the next SDLC turn.

There are two types of Regression Testing performed during the
Maintenance stage:

e Manual Testing
e Automated Testing

STAGE SOFTWARE TESTING CLASSIFICATION Focus
L L 4
Conception Casual Testing |-~ » Formal Testing New Feature
Planning Static Testing |- » Dynamic Testing Documentation
Design Passive Testing ¥ Active Testing Prototype
v
Development Black Box Testing |---- > White Box Testing Software Build
Y
Testing Operational Testing ----» Functional Testing Release Candidate
Deployment Feature Testing ----» Regression Testing Deployable Version
hd
Maintenance Manual Testing - » Automated Testing Deployed App

The dashed line from Manual Testing to Automated Testing
emphasizes the greater importance of the last one with core reason

218

that Automated Testing enables speed, scale, and reliability in a way
that Manual Testing cannot, making it the backbone of any team that
needs to release software frequently and reliably.

Manual Testing

Manual Testing is a type of Regression Testing executed
NERITELYA

Manual Testing means all the essential software feature
verifications and test report generation are performed without the
automated testing tools.

Automated Testing

Automated Testing is a type of Regression Testing executed
automatically by running the test scripts with the automated testing
tools applied.

Automated Testing supposes the use of appropriate automation
tools to develop, enhance, and execute the test scripts to validate the
software.

219

10.8 Software Testing
Classification Scheme

Software Testing Classification may Finally be depicted by the
following scheme.

SOFTWARE TESTING CLASSIFICATION

Conception

‘ Casual Testing }* Formal Testing Stage ‘ System Testing ‘
l l ‘ Integration Testing ‘
P’;f;g:g Static Testing }*-‘ Dynamic Testing ‘ ‘ Module Testing ‘
l i | Component Testing
D;;f:;’ Passive Testing }*{ Active Testing ‘ | Unit Testing

i | :

Dev;ﬁ:,fe"r ‘ Black Box Testing %’l White Box Testing |
\

¥
~ Testing
‘ Smoke Testing ‘ Stage

Operational Testing }-{ Functional Testing ‘

‘ Sanity Testing ‘ l
‘ Critical Path Testing ‘ D‘*P;fgg’ff“f Feature Testing |>| Regression Testing |
‘ Extended Testing ‘ l i
‘ Exhaustive Testing ‘ ”*"'gig;‘;"“‘-‘ Manual Testing }-{ Automated Testing ‘

According to the scheme, Software Development is the most
time and effort consuming, resource extensive, and responsible stage
considering the goals of the Software testing life cycle.

Testing is crucial For the Software Development stage as it
bridges development and real-world usage, ensuring software is
reliable, secure, and user-ready.

Without it, even perfectly designed systems risk catastrophic
failures.

220

221

11. Practice

Learning Software quality assurance fundamentals and then
moving to a real-life project is one of the most effective ways to build a
valuable and rewarding career.

Let's break down why — and create a practical path forward.

Why

The software industry has realized that you cannot test quality at
the end — it must be built in throughout the process.

This has created a massive demand for skilled QA professionals
who understand both theory and practice — every app, website, and
digital system needs to be tested.

Whether you stay in QA or move into development, management,
or product design, understanding QA fundamentals makes you more
thorough, user-focused, and valuable — you learn to think about edge
cases, risks, and the user experience in a way that pure developers
often overlook.

QA theory gives you a framework of what to test, why to test it,
and practice shows you the reality of how things actually break, how to
communicate with developers, how to prioritize — and this
combination is powerful!

Finding a critical bug before it reaches users is incredibly
satisfying — you directly prevent frustration, protect company
revenue, and safeqguard the user experience.

You transition from passive learning to actively creating value.

222

Don't jump into a massive project immediately — follow this
progression to build confidence and skills effectively.

e Step 1.Solidify the Fundamentals — ensure you have a grip on
core concepts:

o SDLC & STLC

o Test Types

o Basic Test Documentation

o Other Core Notions

e Step 2: Practice on a Controlled Real Project — test something
that exists but where the stakes are low:

o Choose a popular website or open-source app — anyone
you love most

o Create a simple Checklist — try to add the most valuable
checks there, don't chase for the quantity

o Write formal Test Cases — don't just click around, write
detailed cases using a dedicated tool

o Execute Tests and Log Bugs — find actual flaws, Ul glitches,
or usability issues and report them in a bug-tracker

e Step 3: Join a Real-Life Project:

o Open Source Software
o Volunteer Projects
o Internships or Junior QA Roles

This gives you a portfolio piece and practical experience with the
workFflow.

The Goal is— You're ready for a team environment.

223

When

This disordered reality is where the real learning happens.

Your theoretical knowledge is the map — practicing on a real
project is the journey where you learn to navigate the actual terrain.

You will get stuck, you will be confused, but you will learn
exponentially Faster than through theory alone.

You need to develop soft skills like communication, persuasion,
and patience that are just as important as your technical testing skills.

Stop hesitating, start breaking things.

First, join the t.me/sgafun group in Telegram to connect with
other readers of this book, just like you — by joining forces, you will
move faster.

Next, if you need my closer standing by, drop me a line in direct
messages and I'll try to help you out.

My email al.vorvul@gmail.com is also at your constant disposal
for your questions, criticism, and proposals.

The transition from learning SQA to practicing it is not a leap.
It's a series of small, manageable steps.

The best time to start was yesterday.

The second-best time is now.

Go forit.

The tech industry needs more skilled, passionate QA
professionals.

224

http://t.me/sqafun
mailto:al.vorvul@gmail.com

Alexander Vorvul

SOFTWARE QUALITY
ASSURANCE FUNDAMENTALS

Electronic version

The book is protected by Copyright.

Copying for purposes other than personal use is permitted only
with the consent of the Copyright holder.

al.vorvul@gmail.com

Wydawnictwo Gutenberg Publisher
tobzowska 15-15
31-139 Krakow

office@gutenbergpublisher.eu

ISBN 978-83-68016-45-1

9 788368 016451

© Alexander Vorvul, Minsk 2025

225

mailto:al.vorvul@gmail.com
mailto:office@gutenbergpublisher.eu

	
	
	
	
	
	I. Software Quality Assurance History
	
	1. Software Quality Assurance History
	Long-Term Periods

	
	1.1. 1947–1956 Debugging period
	Historical Context
	Key Characteristics
	Milestones
	Debugging Period Role

	1.2. 1957-1978 Demonstration Period
	Historical Context
	Key Characteristics
	Milestones
	Demonstration Period Role
	

	1.3. 1979-1982 Destruction Period
	Historical Context
	Key Characteristics
	Milestones
	Destruction Period Role
	

	1.4. 1983-1987 Evaluation period
	Historical Context
	Key Characteristics
	Milestones
	Evaluation Period Role
	

	1.5. 1988-2000 Prevention period
	Historical Context
	Key Characteristics
	Milestones
	Prevention Period Role

	
	1.6. 2001-2011 Test Automation Period
	Historical Context
	Key Characteristics
	Automation Period Role

	1.7. 2012-2021 Continuous Testing Period
	Historical Context
	Key Characteristics
	Continuous Testing Period Role

	
	1.8. 2022-Present AI-Driven Testing
	Historical Context
	Key Characteristics
	Milestones
	AI-Driven Testing Period Role

	
	
	
	
	
	
	II. Software Quality
	
	
	2. Software Quality
	Quality
	Software quality
	Assurance
	Quality Assurance
	Software quality assurance
	Software quality assurance engineer

	
	2.1. Software Quality Scopes
	

	2.2. Software Quality Testing
	Key Objectives
	Software Testing Role
	

	2.3. Software Quality Control
	Key Objectives
	Key Activities
	Quality Control Role

	2.4. Software Quality Assurance
	Software Quality Assurance
	Key Role
	Quality Control and Quality Assurance

	2.5. Software Quality Characteristics
	Functionality
	Usability
	Efficiency
	Reliability
	Maintainability
	Portability
	Key Role

	
	2.6. Entry and Exit Criteria
	Entry Criteria
	Exit Criteria

	
	
	
	
	III. Software Development Life Cycle
	3. Software Development Life Cycle
	SDLC Stages
	Benefits
	Drawbacks

	
	3.1. Software Conception Stage
	Requirements Analysis
	Key Activities
	Entry and Exit Criteria

	
	3.2. Software Planning Stage
	Primary Goals
	Key Activities
	Entry and Exit Criteria
	Planning Stage Role

	
	3.3. Software Design Stage
	Key Activities
	Primary Goals
	Exit Criteria
	

	3.4. Software Development Stage
	Key Activities
	Inputs and Outputs
	Programming languages
	During the Development stage the programming language — PL — is chosen according to the type of the software developed.
	To generate the code, developers must also follow the coding guidelines defined by their organization and such programming tools like compilers, interpreters, and debuggers.
	Exit Criteria
	

	3.5. Software Testing Stage
	Key Activities
	Testing Metrics and Measurements
	Entry and Exit Criteria
	Testing Stage Role

	3.6. Software Deployment Stage
	Key Activities
	Deployment Strategies
	Entry and Exit Criteria

	3.7. Software Maintenance Stage
	Key Objectives
	Key Activities
	Maintenance Models
	Maintenance Stage Role
	

	3.8. SDLC Models
	SDPM Approaches
	Predictive SDPMs
	Adaptive SDPMs
	

	
	
	
	
	
	IV. Predictive SDPMs
	4. Predictive SDPMs
	Benefits
	Drawbacks
	Predictive models

	4.1. Bing Bang Model
	Key Characteristics
	Key Activities
	Benefits
	Drawbacks
	

	4.2. Waterfall Model
	The Waterfall SDPM was the first model to be introduced in 1970 by Winston Royce and is also referred to as a Linear-sequential SDPM.
	Key Activities
	Applicability
	Benefits
	Drawbacks

	
	4.3. Incremental Model
	Key Activities
	Process
	Iterations
	Procedure
	Model Characteristics
	Applicability
	Benefits
	Drawbacks
	

	4.4. Iterative Model
	Key Activities
	Workflow
	Builds
	Testing Role
	Applicability
	Benefits
	Drawbacks

	4.5. Spiral Model
	Spirals
	1. Identification
	2. Design
	3. Construct or Build
	4. Evaluation and Risk Analysis
	Key Activities
	Benefits
	Drawbacks
	Applicability

	
	4.6. V-Model
	Key Activities
	Verification Stages
	1. Business Requirements Analysis
	2. System Design
	3. Architectural Design
	4. Module Design
	5. Coding Stage
	Validation Stages
	1. Unit Testing
	2. Integration Testing
	3. System Testing
	4. Acceptance Testing
	Benefits
	Drawbacks
	Applicability
	

	
	
	
	
	
	V. Adaptive SDPMs
	5. Adaptive SDPMs
	Key Element
	Agility
	Agile Methods
	

	5.1. Agile Methodology
	Activities
	Time Boxes
	

	5.2. Agile Methods
	Benefits
	Drawbacks

	5.3. Agile Manifesto
	Agile Touchstones
	Agile Principles
	

	5.4. Rapid Application Development
	Key Activities
	Key Objectives
	Workflow
	Benefits
	Drawbacks
	Applicability
	

	5.5. Rapid Prototyping
	Key Activities
	Key Objectives
	Benefits
	Drawbacks
	Applicability

	
	5.6. Scrum
	Scrum Principles

	
	
	
	
	VI. Scrum Framework
	6. Scrum Framework
	Scrum Values
	

	6.1. Scrum Team
	Scrum Team Structure
	Core Principles
	

	6.2. Product Owner
	Key Activities
	Key Objectives
	Key Responsibilities
	Tasks

	
	6.3. Scrum Master
	Key Responsibilities

	
	6.4. Development Team
	Team Organization
	

	6.5. Scrum Artifacts
	Product Backlog
	Sprint Backlog
	Increment
	

	6.6. Product Backlog
	Key Activities

	6.7. Sprint Backlog
	Tasks
	Task Board
	Re-Prioritization
	

	6.8. Increment
	Key Activities
	Key Objective
	

	6.9. Scrum Events
	Sprint
	Sprint Planning
	Daily Scrum
	Sprint Review
	Sprint Retrospective
	

	6.10. Sprint
	Workflow
	Emphasis
	Sprint Planning
	

	6.11. Daily Scrum
	Key Characteristics
	Key Objective
	After Party

	
	6.12. Sprint Review
	Key Characteristics
	Guidelines

	6.13. Sprint Retrospective
	Guidelines
	Key Features
	Limits

	
	6.14. Backlog Refinement
	Technical Debt
	Technical Debt may also be discussed during the Backlog Refinement.
	Cancelling a Sprint
	
	

	6.15. Scrum Workflow
	Key Stages of the Scrum Process
	1. Product Backlog Creation and Refinement
	2. Sprint Planning
	3. Daily Scrum
	
	4. Sprint Execution
	5. Sprint Review
	6. Sprint Retrospective
	Core Scrum Artifacts

	
	
	
	
	
	VII. Software Testing Life Cycle
	

	7. Software Testing Life Cycle
	STLC Stages
	

	7.1. Test Conception Stage
	Key Activities
	Key Deliverables
	

	7.2. Test Planning Stage
	Test Plan
	Key Deliverables

	
	7.3. Test Design Stage
	Key Activities
	Key Deliverables
	

	7.4. Test Development Stage
	Key Objectives
	Key Activities
	Key Deliverables

	7.5. Test Execution Stage
	Key Activities
	Key Deliverables

	7.6. Test Closure Stage
	Key Objectives
	Test Results Report
	Key Deliverables
	

	7.7. Test Maintenance
	Key Objectives
	Key Activities
	Key Deliverables
	

	
	
	
	
	VIII. Test Documentation
	8. Test Documentation
	Test Documentation Scopes
	Documentation Categories
	Test Execution Documentation
	Test Automation Documents
	Test Policy Documentation

	8.1. Checklist
	Benefits
	Drawbacks

	
	8.2. Test Case or Test Scenario
	Test Case Types
	Mandatory Fields
	Requirement Traceability Matrix
	Formal Test Case Structure
	Test Scenario

	
	

	8.3. Test Script and Test Data
	Test Script Components
	Test Script Development
	Benefits
	Drawbacks
	Test Data
	

	8.4. Test Suite
	Key Objectives
	Test Suite Types
	

	8.5. Test Plan
	Key Objectives
	Key Components
	Benefits

	8.6. Test Strategy
	Key Objectives
	Key Components
	Test Strategy Role

	
	8.7. Test Policy
	Key Objectives
	

	8.8. Test Management Systems
	Key Objectives
	Benefits
	

	
	
	
	
	IX. Software Quality Defects
	9. Software Quality Defects
	Key Characteristics
	Defect Management Role
	Best Practices

	
	9.1. Defect Classification
	Defect Classification By Severity
	Defect Classification By Priority
	Defect Classification By Origin

	9.2. Defect Life Cycle
	Detailed State Transitions

	
	9.3. Defect Report
	Key Components
	Key Characteristics
	Key Objectives

	
	
	
	
	X. Software Testing Classification
	10. Software Testing Classification
	Key Objectives
	

	10.1. Software Conception Stage Categories
	Casual Testing
	Ad Hoc Testing
	Intuitional Testing
	Exploratory Testing

	Formal Testing
	Origins
	User Stories
	Business Scenarios
	Software Requirements Specification
	Formal Testing Types

	

	10.2. Software Planning Stage Categories
	Static Testing
	Tested Documents
	Static Testing Purpose

	Dynamic Testing
	Dynamic Testing Purpose

	10.3. Software Design Stage Categories
	Passive Testing
	Active Testing
	

	10.4. Software Development Stage Categories
	Black Box Testing
	Gray Box Testing
	White Box Testing

	
	10.5. Software Testing Stage Categories
	Operational Testing
	Operational Testing Purposes

	Functional Testing
	Functional Testing Purposes
	Evaluability
	Bilaterality
	Positive Testing
	Negative Testing

	
	10.6. Software Deployment Stage Categories
	Feature Testing
	Regression Testing

	
	10.7. Software Maintenance Stage Categories
	Manual Testing
	Automated Testing

	
	10.8 Software Testing Classification Scheme
	
	
	
	
	XI. Practice
	11. Practice
	Why
	How
	When

